Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

CBSE Important Questions for Class 7 Maths Algebraic Expressions - 2025-26

ffImage
banner

Algebraic Expressions Class 7 Extra Questions and Answers Free PDF Download

Chapter 10, "Algebraic Expressions," introduces students to the basics of algebra, focusing on expressions, terms, factors, and coefficients. This FREE PDF provides a set of essential practice problems that cover topics like addition, subtraction, and simplification of algebraic expressions. These practice problems help students build a strong foundation in algebra, making it easier to understand and apply algebraic concepts.

toc-symbolTable of Content
toggle-arrow


Aligned with the latest CBSE class 7 maths syllabus, this PDF is an ideal resource for effective revision and targeted practice. Students can download the FREE PDF for Important Questions for Class 7 Maths to access these important questions anytime. This resource is designed to make learning algebra more manageable and to boost confidence for exams.

Access the Important Questions for CBSE Class 7 Maths Chapter 10 Algebraic Expressions

1. Write an expression for a number \[\mathbf{7}\] is subtracted from sum of x and \[\mathbf{4}\].

Ans: According to the given statement the expression that is developed is given as $\left( x+4 \right)-7$


2. The difference of numbers p and q is subtracted from its product. Give equation.

Ans: According to the given statement the expression that is developed is given as\[pq-\left( p-q \right)\]


3. \[-12x\], $\frac{3}{4}x$ is an example for ___

Ans: As we can see that by dividing the first term by 16 we get the second term. So, we can say that the given two terms are like Term


4. Add 5pq and -12pq.

Ans:  Adding the coefficients of the given terms will give the sum of two terms that is,

\[\begin{align} & -12pq \\ & \underline{+\text{ }5pq} \\ & -\text{ }7pq \\ \end{align}\]


5. Subtract 12xy from -5xy.

Ans: Subtracting the coefficients of the given terms will give the difference of two terms that is,

\[\begin{align} & -\text{ }5xy \\ & \underline{-12xy} \\ & -17xy \\ \end{align}\]


6. Add \[x+y-5\], $y-x+5$, $x-y+5$

Ans: Adding the coefficients of the similar terms will give the sum of three terms that is,

\[\begin{align} & +x+y-5 \\ & -x+y+5 \\ & \underline{+x-y+5} \\ & x+y+5 \\ \end{align}\]


7. Add \[3{{a}^{2}}{{b}^{2}}-4ab+5,8{{a}^{2}}{{b}^{2}}+12ab-9,15-6ab-5{{a}^{2}}{{b}^{2}}\].

Ans: Adding the coefficients of the similar terms will give the sum of three terms that is,

\[\begin{align} & \text{  3}{{a}^{2}}{{b}^{2}}-4ab+5 \\ & +8{{a}^{2}}{{b}^{2}}+12ab-9 \\ & \underline{-5{{a}^{2}}{{b}^{2}}-6ab+15} \\ & \text{  }6{{a}^{2}}{{b}^{2}}+2ab+11 \\ \end{align}\]


8. Subtract \[\text{-}{{\text{x}}^{\text{2}}}\text{+6xy}\] from \[\text{8}{{\text{x}}^{\text{2}}}\text{-4xy+12}\].

Ans: Subtracting the coefficients of the similar terms will give the difference of two terms that is,

\[\begin{align} & +8{{x}^{2}}-4xy+12 \\ & \text{ }-{{x}^{2}}+6xy \\ & \underline{\text{  + - }} \\ & \text{  9}{{x}^{2}}+10xy+12 \\ \end{align}\]


9. Subtract \[{{a}^{2}}-4{{b}^{2}}+3ab-20\] from \[2{{a}^{2}}+6{{b}^{2}}+7ab+12\].

Ans: Subtracting the coefficients of the similar terms will give the difference of two terms that is,

\[\begin{align} & 2{{a}^{2}}+6{{b}^{2}}+7ab+12 \\ & \text{  }{{a}^{2}}-4{{b}^{2}}+3ab-20 \\ & \underline{-\text{    +       }-\text{      +      }} \\ & {{a}^{2}}+10{{b}^{2}}+4ab+32 \\ \end{align}\]


10. Find the value of the given equation $4{{x}^{2}}-3x+12$, if $x=-3$

Ans: We are given the quadratic equation of $\text{x}$ as,

$4{{x}^{2}}-3x+12$

Substituting the value $x=-3$,

\[\begin{align} & =4{{\left( -3 \right)}^{2}}-3\left( -3 \right)+12 \\ & =4\times 9+9+12 \\ & =36+9+12 \\ & =57 \\ \end{align}\]


11. Simplify $3\left( 2x+1 \right)+4x+15$ when $x=-1$.

Ans: We are given the quadratic equation of $\text{x}$ as,

$3\left( 2x+1 \right)+4x+15$

Substituting $x=-1$,

\[\begin{align} & =3\left[ 2\left( -1 \right)+1 \right]+4\left( -1 \right)+15 \\ & =3\left( -2+1 \right)-4+15 \\ & =-3-4+15 \\ & =-7+15 \\ & =8 \\ \end{align}\]


12. Find the value of ${{a}^{2}}-{{b}^{2}}$ for $a=-2$ and $b=3$.

Ans: We are given the quadratic equation of $\text{a,b}$ as,

${{a}^{2}}-{{b}^{2}}$

Substituting $a=-2$ and $b=3$,

$\begin{align} & ={{\left( -2 \right)}^{2}}-{{\left( 3 \right)}^{2}} \\ & =4-9 \\ & =-5 \\ \end{align}\]


13. Identify monomials and binomials in the following:

$\text{4xy,-a+8,}{{\text{p}}^{\text{2}}}\text{,xy+4x}$.

Ans: 

Monomials: the expressions that have only one variable. From the given set of expressions the monomials are $\text{-a+8,}{{\text{p}}^{\text{2}}}$

Binomials: the expressions that have two variables. From the given set of expressions the binomials are  $\text{4xy,xy+4x}$.


14. Define

(a) Like Terms

(b) Unlike Terms

Ans: 

(a) Terms having the same algebraic factors are called like terms.

Example: \[3pq\] and \[7pq\]

(b) Terms having different algebraic factors are called unlike terms.

Example: $2xy$ and $-3x$


15. Find the value of equation $3{{x}^{2}}-4x+8$, when $x=8$.

Ans: We are given the quadratic equation of $\text{x}$ as,

$3{{x}^{2}}-4x+8$

Substituting $x=8$,

\[\begin{align} & =3{{\left( 8 \right)}^{2}}-4\left( 8 \right)+8 \\ & =3\left( 64 \right)-32+8 \\ & =192-32+8 \\ & =168 \\ \end{align}\]


16. What should be taken away from $3{{x}^{2}}+2{{y}^{2}}-5xy-25$ to get $-{{x}^{2}}-{{y}^{2}}+2xy+10$.

Ans: Let the term required be $p$.

\[\begin{align} & \left( 3{{x}^{2}}+2{{y}^{2}}-5xy-25 \right)-p=-{{x}^{2}}-{{y}^{2}}+2xy+10 \\ & \Rightarrow p=\left( 3{{x}^{2}}+2{{y}^{2}}-5xy-25 \right)-\left( -{{x}^{2}}-{{y}^{2}}+2xy+10 \right) \\ & \Rightarrow p=3{{x}^{2}}+2{{y}^{2}}-5xy-25+{{x}^{2}}+{{y}^{2}}-2xy-10 \\ & \Rightarrow p=4{{x}^{2}}+3{{y}^{2}}-7xy-35 \\ \end{align}\]

Hence, the required number is \[4{{x}^{2}}+3{{y}^{2}}-7xy-35\].


17. From the sum of $7p+3q+11$ and $4p-2q-5$, subtract $3p-q+11$.

Ans: By adding coefficients of similar terms of the first two expressions we get,

\[\begin{align} & 7p+3q+11 \\ & \underline{4p-2q-\text{ }5} \\ & 11p+q+6 \\ \end{align}\]

By subtracting coefficients of similar terms of the above expression and third expression we get,

\[\begin{align} & 11p+q+6 \\ & 3p-q+11 \\ & \underline{-\text{   +    }-\text{   }} \\ & 8p+2q-5 \\ \end{align}\]


18. From the sum of $8a-5b+3$ and $6a+3b+5$, subtract the difference of $2a-3b+8$ and $a+2b+6$.

Ans: By adding coefficients of similar terms of the first two expressions we get

\[\begin{align} & 8a-5b+3 \\ & \underline{6a+3b+5} \\ & 14a-2b+8 \\ \end{align}\]

By subtracting coefficients of similar terms of the above expression and third expression we get,

\[\begin{align} & 2a-3b+8 \\ & \text{  }a+2b+6 \\ & \underline{-\text{   }-\text{    }-\text{  }} \\ & \text{  }a-5b+2 \\ \end{align}\]

By subtracting,

\[\begin{align} & 14a-2b+8 \\ & \text{    }a-5b+2 \\ & \underline{-\text{     +     }-\text{    }} \\ & \text{ }13a+3b+6 \\ \end{align}\]


19. Find the value of

(a) $3{{p}^{2}}+4{{q}^{2}}-5$, when $p=3$ and $q=-2$

(b) ${{x}^{3}}-3{{x}^{2}}y+2x{{y}^{2}}+8xy+9$, when $x=-3$ and $y=1$

Ans: 

(a) $3{{p}^{2}}+4{{q}^{2}}-5$ 

Substituting $p=3,q=-2$,

\[\begin{align} & =3{{\left( 3 \right)}^{2}}+4{{\left( -2 \right)}^{2}}-5 \\ & =27+16-5 \\ & =38 \\ \end{align}\]

(b) ${{x}^{3}}-3{{x}^{2}}y+2x{{y}^{2}}+8xy+9$

Substituting $x=-3,y=1$,

\[\begin{align} & ={{\left( -3 \right)}^{3}}-3{{\left( -3 \right)}^{2}}\left( 1 \right)+2\left( -3 \right){{\left( 1 \right)}^{2}}+8\left( -3 \right)\left( 1 \right)+9 \\ & =-27-27-6-34+9 \\ & =-54-30+9 \\ & =-75 \\ \end{align}\]


20. What should be the value of ‘p’, $3{{m}^{2}}+m+p=12$ when $m=0$.

Ans: We are given the quadratic equation of $\text{m}$ as,

$3{{m}^{2}}+m+p=12$

Substituting $m=0$,

\[\begin{align} & 3{{\left( 0 \right)}^{2}}+\left( 0 \right)+p=12 \\ & p=12 \\ \end{align}\]


A Quick Recap of All the Basic Terminologies

  1. Variable- An unknown entity is called a variable when it changes with a change in the situation. 

  2. Constant- Constant is the value that never changes, it stays fixed.

  3. Terms- The quantities that are added or subtracted are called terms.

  4. Coefficient- The number with which a variable is multiplied. 

  5. Like Terms- Terms having the same variables.

For example 3y, 7y, 45y

  1. Unlike Terms- Terms that have different variables.

For example 3xy, 6x, 7y


Addition and Subtraction in Algebra

Like Terms

The coefficients of all the terms are added or subtracted.

3x + 8x - 4x - 2x =?

3x + 8x - 4x - 2x = 5x


Unlike Terms

All the terms having similar variables when taken together the coefficients can be added or subtracted.

7xy - 2x + 8x + 6y - 4xy=?

(7xy - 4xy) + (-2x + 8x) + 6y = 3xy + 6x + 6y

 

Number Patterns

  • The successor of a natural number, n = (n+1). 

  • Example: If n = 12, then the successor = (n+1)= 13

  • 2n is an even number (if n is a natural number) 

  • (2n+1) is an odd number


Some Important Definitions

Algebraic Expression: An algebraic expression is formed with the help of operators i.e. addition, subtraction, multiplications, and divisions.

Equation: When an equality sign “=” is used between two expressions, then it is called an equation.

Example: 3+4x=15.

Problem: 

Form an algebraic expression: x is first multiplied by 6 and then 7 subtracted from the product.

Solution: 

(6*x)-7= 6x-7

Problem: 

Let an algebraic expression be 3m²-4m+2 with variable m. Find the value of the expression if m=2.

Solution: 

3(2)²-4(2)+2 = 3*4 – 8+2 = 12-8+2 = 6


Practical Use of Expression

2 boys go to a shop and both of them buy a notebook and a pen. The cost of the notebook and pen is $5 and $1 respectively. What is the total cost?

Answer: 

x= cost of a notebook

Y= cost of a pen

Total cost = 2(x + y)= 2(5 + 1) = 2*6 = 12

Hence, the total cost of a pen and notebook for 2 girls is $12.


Types of Algebraic Expression

Based on the number of terms;

  • Monomial Expression - Expression that has only one term. Example: 9xy, 3x², 22y

  • Binomial Expression - Expression with only two terms. Example: xyz + 8y², x²y² + 9xy

  • Trinomial Expression - Expression with more than two terms. Example: 65xyz + 10x²y + 31y²z + 42z²


Important Formulas of Class 7 Chapter 10 Algebraic Expressions You Shouldn’t Miss!

1. (a + b)² = a²+ 2ab + b²

2. (a – b) ² = a² – 2ab + b²

3. (a + b) (a – b) = a²– b²

4. (a + b)³ = a³ + b³+ 3ab (a + b)

5. (a – b) ³ = a³ – b³– 3ab (a – b)

6. x³ + y³ = (x + y) (x² – xy + y²)

7. x³ – y³ = (x – y) (x² + xy + y²)

Algebraic expressions can be used to find out the perimeter of various figures.

If l is considered to be the length of each side, then the perimeter of

  1. Square= 4l

  2. Equilateral Triangle= 3l

  3. Regular Pentagon= 5l

  4. Regular Hexagon= 6l, and so on

Algebraic expressions can also be used to find out the area of various figures.

Square: area= l² (l= length of each side)

Rectangle: area= l*b (l is the length and b is the breadth)

Triangle: area= (b*h)/2 (b and h are the base and height of the triangle respectively)

Diagonal: Number of diagonals drawn  by choosing one vertex of a polygon = n-3 (n = number of sides of the polygon)


Some Important Questions from Algebraic Expression

1. Subtract 12xy from -5xy. ( 1 mark )

Solution:

-5xy

-12xy

-17xy   


2. Subtract - x² + 6xy from 8x² - 4xy + 12 (2 marks)

Solution:

8x² - 4xy + 12

- x² + 6xy

+       - 

9x² - 10xy + 12


3. Simplify 3(2x+1) + 4x + 15 When x=1 (2 marks)

Solution:

3(2x+1) + 4x + 15

= 3[2(-1) +1] + 4(-1) + 15

= -3-4+15

= -7+15

= 8


4. Find the Value of 

a) 3p² + 4q² - 5 when p=3 and q= -2

b) x³ - 3x²y + 2xy² + 8xy + 9 when x= -3 and y= 1. (3 marks)

Solution:

a) 3p² + 4q² - 5

= 3(3)² + 4(-2)² - 5

= 3*9 + 16 – 5

= 38

b) x³ - 3x²y + 2xy² + 8xy + 9

= (-3)³ – 3(-3)²(1)+ 2(-3)(1)²+ 8(-3)(1)+ 9

= -27 – 27 – 6 – 24 + 9

= - 75


5. What should be the Value of ‘p’, 3m² + m + p= 12 When m= 0. (3 marks)

Solution: 

3m² + m + p= 12

=˃ 3(0) + 0 + p = 12 [m=0]

=˃ p= 12


Benefits of Important Questions for Class 7 Maths Chapter 10 Algebraic Expressions

  • Important Questions for Class 7 Maths Chapter 10 Algebraic Expressions focus on key concepts in algebraic expressions, helping students better understand terms, factors, coefficients, and how to simplify expressions.

  • Practising these questions encourages students to apply algebraic rules and techniques, which strengthens their ability to solve complex problems effectively.

  • By working on important questions, students become familiar with the types of questions likely to appear in exams, helping them feel prepared and confident.

  • Regular practice with algebraic expressions improves calculation speed and accuracy, essential for handling questions within time limits in exams.

  • Important questions highlight the main topics, making it easier for students to revise the chapter efficiently before exams.


Conclusion

Algebraic Expressions is an integral part of Class 7 Maths and plays a crucial role from an examination perspective. The important questions for Class 7 Maths, cover a wide range of topics within the subject. They also provide a concise guide to critical points and details related to the topic.


A solid understanding of each section of Class 7 Maths is fundamental as it forms the basis for higher-level studies. However, this section primarily focuses on important questions within the context of Class 7 Maths.


Important Study Materials for Class 7 Maths Chapter 10

Chapter-wise Important Questions Links for Class 7 Maths

Important Study Materials for Class 7 Maths

WhatsApp Banner

FAQs on CBSE Important Questions for Class 7 Maths Algebraic Expressions - 2025-26

1. What types of 1-mark questions are frequently asked from Algebraic Expressions in the Class 7 Maths exam?

For the Class 7 exam, 1-mark questions on this chapter typically test your understanding of basic definitions. You can expect questions that ask you to:

  • Identify the terms and their coefficients in an expression like 4x²y - 3xy + 5.
  • Classify a polynomial as a monomial, binomial, or trinomial.
  • Distinguish between like and unlike terms from a given list.
Mastering these basics is crucial for scoring well on objective-type questions.

2. What is the key difference between an algebraic expression and an equation, and why is this important for solving problems?

The primary difference is the presence of an equal sign (=). An algebraic expression is a combination of variables and constants with operators (e.g., 5x + 9), which can only be simplified or evaluated. An equation sets two expressions equal to each other (e.g., 5x + 9 = 24) and can be solved to find the specific value of the variable. Understanding this is vital because the exam question will either ask you to "simplify" an expression or "solve" an equation—using the wrong approach leads to incorrect answers.

3. How do you identify like and unlike terms, and why is this a critical first step for addition and subtraction questions?

Like terms are terms that have the exact same variables raised to the exact same powers. For example, 7xy² and -2xy² are like terms, but 3x²y is an unlike term. Identifying them correctly is the most critical step because in algebra, you can only add or subtract like terms. Failing to group them properly is a common error in exams that leads to a completely wrong simplified expression.

4. What are the important steps to follow when adding or subtracting algebraic expressions to avoid common errors?

To accurately add or subtract expressions and score full marks, follow these steps as per the CBSE 2025-26 syllabus:

  • Step 1: Arrange the expressions by grouping all like terms together.
  • Step 2: For subtraction, remember to reverse the sign of every term in the expression that is being subtracted. For example, to subtract (2a - b), you will add (-2a + b).
  • Step 3: Combine the numerical coefficients of the like terms. The variable part remains the same.
Paying close attention to the signs in Step 2 is the most important part.

5. A common exam question asks to subtract '5x - 10' from '2x + 7'. What is the correct method and the most likely error?

The correct method is to write the expression from which you are subtracting first: (2x + 7) - (5x - 10). The most common and critical error is improper sign change. Students often write 2x + 7 - 5x - 10, forgetting to distribute the negative sign to the -10. The correct simplification is 2x + 7 - 5x + 10, which simplifies to -3x + 17. This type of question is a classic trap to test your understanding of subtraction.

6. How are algebraic expressions used to frame important questions on the perimeter of geometric shapes?

In Class 7 exams, you can expect questions where the side lengths of shapes like rectangles or triangles are given as algebraic expressions (e.g., length = 3a + 4b, width = 2a - b). To find the perimeter, you must use the appropriate formula, such as P = 2(length + width). This converts the geometry problem into an algebraic one requiring you to add and simplify expressions. These application-based questions are important as they test multiple concepts at once.

7. What is a frequently asked 3-mark question type involving finding the value of an expression?

A very common 3-mark question format asks you to perform two tasks. First, you must simplify a complex expression involving addition or subtraction, like simplifying '2x - (5y + {3x - y})'. Second, after getting the simplified form, you must substitute the given numerical values for the variables (e.g., x=2, y=-1) to find the final answer. These questions are important because they test both your simplification and calculation skills.

8. For exam purposes, why is it better to simplify an expression before substituting values?

It is a crucial exam strategy to always simplify an expression first before substituting any numerical values. Simplifying reduces the number of terms and combines them, which leads to fewer calculations. This not only saves valuable time during the exam but also significantly reduces the risk of making simple arithmetic errors. A simplified expression is much easier and faster to evaluate correctly.