
For photoelectric emission, tungsten requires light of \[2300\mathop A\limits^ \circ \]. If light of \[1800\mathop A\limits^ \circ \] wavelength is incident, then emission:
A. Takes place
B. Doesn’t take place
C. May or may not take place
D. Depends on frequency
Answer
180k+ views
Hint: The threshold frequency of the metal is the frequency corresponding to the minimum energy that is required to eject the electron from the surface of metal.
Formula used:
\[K = h\nu - {\phi _0}\]
Here K is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\nu \] is the frequency of the photon and \[\phi \] is the work function of the metal.
\[c = \nu \lambda \]
Here c is the speed of light, \[\nu \] is the frequency and \[\lambda \] is the wavelength of the electromagnetic wave.
Complete step by step solution:
For the minimum condition, the kinetic energy of the ejected electron is zero.
Using the energy formula,
\[{\phi _0} = h{\nu _0}\]
Using the relation between the frequency and the wavelength,
\[{\phi _0} = \dfrac{{hc}}{{{\lambda _0}}}\]
Putting in the formula of the kinetic energy, we get
\[K = \dfrac{{hc}}{\lambda } - \dfrac{{hc}}{{{\lambda _0}}}\]
\[K = hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right)\]
For the emission of the electron, the kinetic energy of the ejected electron must be non-zero. If the energy of the photon exceeds the minimum energy needed to eject the electron then the rest of the energy is transferred as kinetic energy of the ejected electrons.
So,
\[K \ge 0\]
\[hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right) \ge 0\]
\[\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}} \ge 0\]
\[\dfrac{1}{\lambda } \ge \dfrac{1}{{{\lambda _0}}}\]
\[\lambda \le {\lambda _0}\]
As per the given data \[{\lambda _0} = 2300\mathop A\limits^ \circ \] and \[\lambda = 1800\mathop A\limits^ \circ \]
Hence, the emission takes place.
Therefore, the correct option is A.
Note: It is important to remember that the maximum kinetic energy of an ejected electron is directly proportional to the frequency of incident radiation and independent to the intensity of incident radiation.
Formula used:
\[K = h\nu - {\phi _0}\]
Here K is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\nu \] is the frequency of the photon and \[\phi \] is the work function of the metal.
\[c = \nu \lambda \]
Here c is the speed of light, \[\nu \] is the frequency and \[\lambda \] is the wavelength of the electromagnetic wave.
Complete step by step solution:
For the minimum condition, the kinetic energy of the ejected electron is zero.
Using the energy formula,
\[{\phi _0} = h{\nu _0}\]
Using the relation between the frequency and the wavelength,
\[{\phi _0} = \dfrac{{hc}}{{{\lambda _0}}}\]
Putting in the formula of the kinetic energy, we get
\[K = \dfrac{{hc}}{\lambda } - \dfrac{{hc}}{{{\lambda _0}}}\]
\[K = hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right)\]
For the emission of the electron, the kinetic energy of the ejected electron must be non-zero. If the energy of the photon exceeds the minimum energy needed to eject the electron then the rest of the energy is transferred as kinetic energy of the ejected electrons.
So,
\[K \ge 0\]
\[hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right) \ge 0\]
\[\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}} \ge 0\]
\[\dfrac{1}{\lambda } \ge \dfrac{1}{{{\lambda _0}}}\]
\[\lambda \le {\lambda _0}\]
As per the given data \[{\lambda _0} = 2300\mathop A\limits^ \circ \] and \[\lambda = 1800\mathop A\limits^ \circ \]
Hence, the emission takes place.
Therefore, the correct option is A.
Note: It is important to remember that the maximum kinetic energy of an ejected electron is directly proportional to the frequency of incident radiation and independent to the intensity of incident radiation.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Mass and Weight

JEE Main 2023 April 13 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Wheatstone Bridge for JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

What is Hybridisation in Chemistry?

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
