
In the Bohr's model of a hydrogen atom, the centripetal force is furnished by the coulomb attraction between the proton and the electron. If \[{a_0}\] is the radius of the ground state orbit, m is the mass and e is charge on the electron and \[{\varepsilon _0}\] is the vacuum permittivity, the speed of the electron is
A. Zero
B. \[\dfrac{e}{{\sqrt {{\varepsilon _0}{a_0}m} }} \\ \]
C. \[\dfrac{e}{{\sqrt {4\pi {\varepsilon _0}{a_0}m} }} \\ \]
D. \[\sqrt {\dfrac{{4\pi {\varepsilon _0}{a_0}m}}{e}} \]
Answer
180k+ views
Hint:In the nucleus of Hydrogen atoms protons and neutrons reside. The electron moves in a circular orbit around the nucleus. As neutrons are neutral units, the centripetal force is furnished by the coulomb attraction between the proton and the electron.
Formula used:
\[{F_i} = \dfrac{{{q_1} \times {q_2}}}{{4\pi {\varepsilon _0}{d^2}}}\]
where \[{F_i}\] is the inward coulomb’s force of attraction between charges \[{q_1}\] and \[{q_2}\] separated by distance d.
\[{F_o} = \dfrac{{m{v^2}}}{r}\]
where \[{F_o}\] is the outward centrifugal force acting on mass m revolving around an orbit of radius r with speed v.
Complete step by step solution:
The mass of the electron is given as m. The charge on the electron is e. As we know that the magnitude of charge on protons is the same as the magnitude of charge on electrons, so the charge on protons is also e. The electron is orbiting in the circular orbit of radius \[{a_0}\].
The centripetal force acting on the electron is due to the Coulomb force of attraction between two charges kept at distance equal to the radius of the orbit.
\[{F_i} = \dfrac{{{e^2}}}{{4\pi {\varepsilon _0}a_0^2}}\]
Let the speed of the electron is v in the circular orbit, then radially outward there will be centrifugal force acting on it.
\[{F_0} = \dfrac{{m{v^2}}}{{{a_0}}}\]
When the electron is performing uniform circular motion in a constant radius of orbit, it is at equilibrium along the radial direction.
So, the outward centrifugal force is balanced by inward centripetal force.
\[{F_i} = {F_o}\]
\[\Rightarrow \dfrac{{{e^2}}}{{4\pi {\varepsilon _0}a_0^2}} = \dfrac{{m{v^2}}}{{{a_0}}} \\ \]
\[\Rightarrow {v^2} = \dfrac{{{e^2}}}{{4\pi {\varepsilon _0}m{a_0}}} \\ \]
\[\Rightarrow v = \sqrt {\dfrac{{{e^2}}}{{4\pi {\varepsilon _0}m{a_0}}}} \\ \]
\[\therefore v = \dfrac{e}{{\sqrt {4\pi {\varepsilon _0}m{a_0}} }} \\ \]
So, the speed of the electron in the circular orbit about the nucleus of the hydrogen atom is equal to \[\dfrac{e}{{\sqrt {4\pi {\varepsilon _0}{a_0}m} }}\].
Therefore, the correct option is C.
Note: The nucleus of the hydrogen has mass and the electron too has mass. Due to mass there is gravitational force of attraction between the nucleus and the electron which contribute to the centripetal force. But, the magnitude of the gravitational force of attraction between the nucleus of hydrogen and the orbiting electron is insignificant relative to the coulomb’s force of attraction. So, we don’t neglect it while solving the problem.
Formula used:
\[{F_i} = \dfrac{{{q_1} \times {q_2}}}{{4\pi {\varepsilon _0}{d^2}}}\]
where \[{F_i}\] is the inward coulomb’s force of attraction between charges \[{q_1}\] and \[{q_2}\] separated by distance d.
\[{F_o} = \dfrac{{m{v^2}}}{r}\]
where \[{F_o}\] is the outward centrifugal force acting on mass m revolving around an orbit of radius r with speed v.
Complete step by step solution:
The mass of the electron is given as m. The charge on the electron is e. As we know that the magnitude of charge on protons is the same as the magnitude of charge on electrons, so the charge on protons is also e. The electron is orbiting in the circular orbit of radius \[{a_0}\].
The centripetal force acting on the electron is due to the Coulomb force of attraction between two charges kept at distance equal to the radius of the orbit.
\[{F_i} = \dfrac{{{e^2}}}{{4\pi {\varepsilon _0}a_0^2}}\]
Let the speed of the electron is v in the circular orbit, then radially outward there will be centrifugal force acting on it.
\[{F_0} = \dfrac{{m{v^2}}}{{{a_0}}}\]
When the electron is performing uniform circular motion in a constant radius of orbit, it is at equilibrium along the radial direction.
So, the outward centrifugal force is balanced by inward centripetal force.
\[{F_i} = {F_o}\]
\[\Rightarrow \dfrac{{{e^2}}}{{4\pi {\varepsilon _0}a_0^2}} = \dfrac{{m{v^2}}}{{{a_0}}} \\ \]
\[\Rightarrow {v^2} = \dfrac{{{e^2}}}{{4\pi {\varepsilon _0}m{a_0}}} \\ \]
\[\Rightarrow v = \sqrt {\dfrac{{{e^2}}}{{4\pi {\varepsilon _0}m{a_0}}}} \\ \]
\[\therefore v = \dfrac{e}{{\sqrt {4\pi {\varepsilon _0}m{a_0}} }} \\ \]
So, the speed of the electron in the circular orbit about the nucleus of the hydrogen atom is equal to \[\dfrac{e}{{\sqrt {4\pi {\varepsilon _0}{a_0}m} }}\].
Therefore, the correct option is C.
Note: The nucleus of the hydrogen has mass and the electron too has mass. Due to mass there is gravitational force of attraction between the nucleus and the electron which contribute to the centripetal force. But, the magnitude of the gravitational force of attraction between the nucleus of hydrogen and the orbiting electron is insignificant relative to the coulomb’s force of attraction. So, we don’t neglect it while solving the problem.
Recently Updated Pages
Degree of Dissociation Important Concepts and Tips for JEE

JEE Main Chemistry Question Paper PDF Download with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Wheatstone Bridge for JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

What is Hybridisation in Chemistry?

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
