
The electric field potential in space has the form $V(x,y,z) = - 2xy + 3y{z^{ - 1}}$. The electric field intensity $\vec E$ magnitude at the point $( - 1,1,2)$ is
(A) $2\sqrt {86} units$
(B) $2\sqrt {163} units$
(C) $\sqrt {163} units$
(D) $\sqrt {86} units$
Answer
180k+ views
Hint: Electric field potential of a point is defined as the energy which is required to bring a unit positive charge from infinity to that point. The electric field intensity of a point is defined as the force that is experienced by a unit positive charge at that point.
Formula used:
$\vec E = - \dfrac{{dV}}{{dr}}$
Where V is the electric field potential at a point
And r is the distance from the point.
E is the electric field intensity.
Complete step by step solution:
The Relation between the electric field intensity and electric field potential is given by the relation-
$\vec E = - \dfrac{{dV}}{{dr}}$
This means that Electric field intensity is the derivative of the Electric field potential. The negative sign implies that the direction of $\vec E$ is opposite to that of V.
In the question it is given that,
The electric field potential is related to space as, $V(x,y,z) = - 2xy + 3y{z^{ - 1}}$
There will be different values of $\vec E$in all the different axes. The resultant of all these values will be the net Electric Field Intensity at the given point.
The value of $\vec E$at each axis is calculated by partially differentiating the V for that axis.
The component of$\vec E$in the x axis is given by-
${\vec E_x} = - \dfrac{{\partial V}}{{\partial x}} = - \dfrac{\partial }{{dx}}\left( { - 2xy + \dfrac{{3y}}{z}} \right)$
In partial differentiation with respect to x the variables other than x are treated as constant, thus the equation is-
${\vec E_x} = - \left( { - 2y} \right) = 2y\hat i$
Similarly for the y direction-
${\vec E_y} = - \dfrac{\partial }{{\partial y}}\left( { - 2xy + \dfrac{{3y}}{z}} \right)$
${\vec E_y} = - \left( { - 2x + \dfrac{3}{z}} \right)\hat j$
${\vec E_y} = \left( {2x - \dfrac{3}{z}} \right)\hat j$
For the z direction-
${\vec E_z} = - \dfrac{\partial }{{\partial z}}\left( { - 2xy + \dfrac{{3y}}{z}} \right)$
${\vec E_z} = - \left( { - \dfrac{{3y}}{{{z^2}}}} \right)\hat k$
${\vec E_z} = \left( {\dfrac{{3y}}{{{z^2}}}} \right)\hat k$
For point $\left( { - 1,1,2} \right)$the values or ${E_x},{E_y}and{E_z}$are given by-
${\vec E_x} = 2y\hat i = 2 \times 1 = 2\hat i$
${\vec E_y} = \left( {2x - \dfrac{3}{z}} \right)\hat j = \left( {2 \times ( - 1) - \dfrac{3}{2}} \right)\hat j$
${\vec E_y} = - \left( {2 + \dfrac{3}{2}} \right)\hat j = - \dfrac{7}{2}\hat j$
${\vec E_z} = \left( {\dfrac{{3y}}{{{z^2}}}} \right)\hat k = \left( {\dfrac{{3 \times 1}}{{2 \times 2}}} \right) = \left( {\dfrac{3}{4}} \right)\hat k$
The net electric field at the point$\left( { - 1,1,2} \right)$,
${E_{net}} = \sqrt {{{({E_x}\hat i)}^2} + {{({E_y}\hat j)}^2} + {{({E_z}\hat k)}^2}} $
${E_{net}} = \sqrt {{{\left( 2 \right)}^2} + {{\left( { - \dfrac{7}{2}} \right)}^2} + {{\left( {\dfrac{3}{4}} \right)}^2}} $
${E_{net}} = \sqrt {4 + \dfrac{{49}}{4} + \dfrac{9}{{16}}} $
\[{E_{net}} = \sqrt {\dfrac{{64 + 196 + 9}}{{16}}} \]
${E_{net}} = \sqrt {\dfrac{{269}}{{16}}} = \dfrac{1}{4}\sqrt {269} $
The net electric field at that point is $\dfrac{1}{4}\sqrt {269} $
No option is the correct answer.
Note: The electric field intensity is vector quantity, the reason why the electric potential is partially differentiated is because it is a scalar quantity. To specify the values associated with the particular directions of Electric field intensity, the partial differentiation is done.
Formula used:
$\vec E = - \dfrac{{dV}}{{dr}}$
Where V is the electric field potential at a point
And r is the distance from the point.
E is the electric field intensity.
Complete step by step solution:
The Relation between the electric field intensity and electric field potential is given by the relation-
$\vec E = - \dfrac{{dV}}{{dr}}$
This means that Electric field intensity is the derivative of the Electric field potential. The negative sign implies that the direction of $\vec E$ is opposite to that of V.
In the question it is given that,
The electric field potential is related to space as, $V(x,y,z) = - 2xy + 3y{z^{ - 1}}$
There will be different values of $\vec E$in all the different axes. The resultant of all these values will be the net Electric Field Intensity at the given point.
The value of $\vec E$at each axis is calculated by partially differentiating the V for that axis.
The component of$\vec E$in the x axis is given by-
${\vec E_x} = - \dfrac{{\partial V}}{{\partial x}} = - \dfrac{\partial }{{dx}}\left( { - 2xy + \dfrac{{3y}}{z}} \right)$
In partial differentiation with respect to x the variables other than x are treated as constant, thus the equation is-
${\vec E_x} = - \left( { - 2y} \right) = 2y\hat i$
Similarly for the y direction-
${\vec E_y} = - \dfrac{\partial }{{\partial y}}\left( { - 2xy + \dfrac{{3y}}{z}} \right)$
${\vec E_y} = - \left( { - 2x + \dfrac{3}{z}} \right)\hat j$
${\vec E_y} = \left( {2x - \dfrac{3}{z}} \right)\hat j$
For the z direction-
${\vec E_z} = - \dfrac{\partial }{{\partial z}}\left( { - 2xy + \dfrac{{3y}}{z}} \right)$
${\vec E_z} = - \left( { - \dfrac{{3y}}{{{z^2}}}} \right)\hat k$
${\vec E_z} = \left( {\dfrac{{3y}}{{{z^2}}}} \right)\hat k$
For point $\left( { - 1,1,2} \right)$the values or ${E_x},{E_y}and{E_z}$are given by-
${\vec E_x} = 2y\hat i = 2 \times 1 = 2\hat i$
${\vec E_y} = \left( {2x - \dfrac{3}{z}} \right)\hat j = \left( {2 \times ( - 1) - \dfrac{3}{2}} \right)\hat j$
${\vec E_y} = - \left( {2 + \dfrac{3}{2}} \right)\hat j = - \dfrac{7}{2}\hat j$
${\vec E_z} = \left( {\dfrac{{3y}}{{{z^2}}}} \right)\hat k = \left( {\dfrac{{3 \times 1}}{{2 \times 2}}} \right) = \left( {\dfrac{3}{4}} \right)\hat k$
The net electric field at the point$\left( { - 1,1,2} \right)$,
${E_{net}} = \sqrt {{{({E_x}\hat i)}^2} + {{({E_y}\hat j)}^2} + {{({E_z}\hat k)}^2}} $
${E_{net}} = \sqrt {{{\left( 2 \right)}^2} + {{\left( { - \dfrac{7}{2}} \right)}^2} + {{\left( {\dfrac{3}{4}} \right)}^2}} $
${E_{net}} = \sqrt {4 + \dfrac{{49}}{4} + \dfrac{9}{{16}}} $
\[{E_{net}} = \sqrt {\dfrac{{64 + 196 + 9}}{{16}}} \]
${E_{net}} = \sqrt {\dfrac{{269}}{{16}}} = \dfrac{1}{4}\sqrt {269} $
The net electric field at that point is $\dfrac{1}{4}\sqrt {269} $
No option is the correct answer.
Note: The electric field intensity is vector quantity, the reason why the electric potential is partially differentiated is because it is a scalar quantity. To specify the values associated with the particular directions of Electric field intensity, the partial differentiation is done.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Mass and Weight

JEE Main 2023 April 13 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

Trending doubts
Electric field due to uniformly charged sphere class 12 physics JEE_Main

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Two cells of emf 4V and 2V and internal resistance class 12 physics JEE_Main

Current Loop as Magnetic Dipole and Its Derivation for JEE

Other Pages
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Advanced 2026 Notes

Diffraction of Light - Young’s Single Slit Experiment

A conducting wire is bent in the form of a parabola class 12 physics JEE_Main

JEE Advanced 2025 Revision Notes for Practical Organic Chemistry
