
The force between two short electric dipoles placed on the same axis at a distance $R$ varies as?
A) ${R^{ - 1}}$
B) ${R^{ - 2}}$
C) ${R^{ - 3}}$
D) ${R^{ - 4}}$
Answer
180k+ views
Hint: Force acting between two electric dipoles depends on the potential energy of the electric dipoles. If the dipole moment is constant, the net force is zero, because the charges get pulled equally and oppositely.
Complete step by step solution:
Here it is given in the question that two short electric dipoles on the same axis are at a distance of $R$ from each other. We are asked to find how the force acting in between them varies in the term of $R$.
We know the electric produced by an electric dipole in a n axial position is given by the equation,
$E = \dfrac{{2KP}}{{{R^3}}}$
Where, $K$ is the electrostatic constant.
The value of the electrostatic constant is given by, $K = \dfrac{1}{{4\pi {\varepsilon _0}}}$
$P$ is the electric dipole moment.
Now, potential energy of the dipole, $U = - PE\cos \theta $
Where, $\theta $ is the angle between the electric field and dipole, here it is placed in the same axis and thus the angle between the electric field and dipole will be zero.
$ \Rightarrow U = - PE\cos 0$
$ \therefore U = - PE$
Substituting the value of $E$ in this equation, we get,
$ \therefore U = - P \times \dfrac{{2KP'}}{{{R^3}}}$
We need to find the value of force acting between the two electric dipoles.
Force acting is given by the equation,
$F = - \dfrac{{dU}}{{dR}}$
Applying the value of the potential energy to this equation, we get,
$ \Rightarrow F = - \dfrac{d}{{dR}}\left( {\dfrac{{ - 2KPP'}}{{{R^3}}}} \right)$
$ \Rightarrow F = 2KPP'\dfrac{d}{{dR}}\left( {\dfrac{1}{{{R^3}}}} \right)$
$ \therefore F = - 6KPP'\dfrac{1}{{{R^4}}}$
There for the force between two short electric dipole placed on the same axis at a distance $R$ is proportional to $\dfrac{1}{{{R^4}}}$ or ${R^{ - 4}}.$
So the final answer is option (D), ${R^{ - 4}}$.
Note: An electric dipole is defined as a couple of opposite charges $q$ and $ - q$separated by a distance $R$. By default, the direction of electric dipoles in space is always from negative charge $ - q$ to positive charge $q$. The midpoint $q$ and $ - q$ is called the centre of the dipole.
Complete step by step solution:
Here it is given in the question that two short electric dipoles on the same axis are at a distance of $R$ from each other. We are asked to find how the force acting in between them varies in the term of $R$.
We know the electric produced by an electric dipole in a n axial position is given by the equation,
$E = \dfrac{{2KP}}{{{R^3}}}$
Where, $K$ is the electrostatic constant.
The value of the electrostatic constant is given by, $K = \dfrac{1}{{4\pi {\varepsilon _0}}}$
$P$ is the electric dipole moment.
Now, potential energy of the dipole, $U = - PE\cos \theta $
Where, $\theta $ is the angle between the electric field and dipole, here it is placed in the same axis and thus the angle between the electric field and dipole will be zero.
$ \Rightarrow U = - PE\cos 0$
$ \therefore U = - PE$
Substituting the value of $E$ in this equation, we get,
$ \therefore U = - P \times \dfrac{{2KP'}}{{{R^3}}}$
We need to find the value of force acting between the two electric dipoles.
Force acting is given by the equation,
$F = - \dfrac{{dU}}{{dR}}$
Applying the value of the potential energy to this equation, we get,
$ \Rightarrow F = - \dfrac{d}{{dR}}\left( {\dfrac{{ - 2KPP'}}{{{R^3}}}} \right)$
$ \Rightarrow F = 2KPP'\dfrac{d}{{dR}}\left( {\dfrac{1}{{{R^3}}}} \right)$
$ \therefore F = - 6KPP'\dfrac{1}{{{R^4}}}$
There for the force between two short electric dipole placed on the same axis at a distance $R$ is proportional to $\dfrac{1}{{{R^4}}}$ or ${R^{ - 4}}.$
So the final answer is option (D), ${R^{ - 4}}$.
Note: An electric dipole is defined as a couple of opposite charges $q$ and $ - q$separated by a distance $R$. By default, the direction of electric dipoles in space is always from negative charge $ - q$ to positive charge $q$. The midpoint $q$ and $ - q$ is called the centre of the dipole.
Recently Updated Pages
Degree of Dissociation Important Concepts and Tips for JEE

JEE Main Chemistry Question Paper PDF Download with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Wheatstone Bridge for JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

What is Hybridisation in Chemistry?

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
