
List of coprime numbers from 1 to 100.
Answer
471.3k+ views
Hint: Here in this question, we have to write the coprime numbers from 1 to 100. To solve this question, we must know the definition of coprime and on the basis of the greatest common factor of the prime numbers we are going to write the coprime numbers.
Complete step-by-step solution:
In mathematics we have different forms of numbers namely, natural numbers, whole numbers, integers, rational numbers, prime numbers, even numbers etc.,
Now we know the definition of coprime number
‘Co’ refers to a ‘pair’. So, we can define a pair of integers, let's say a and b, as coprime or primes to each other or mutually prime or relatively prime if:
the only positive integer that divides both of them to give a remainder zero is 1
In other words, the HCF of the two numbers is 1
Coprime numbers are denoted as \[\gcd (a,b) = 1\] or \[(a,b) = 1\] or as “a is prime to b”.
The coprime numbers from 1 to 100
(2,3), (3,5), (5,7), (11,13), (17,19), (21,22), (29,31), (41,43), (59,61), (71,73), (87,88), (99,100), (28,57), (13,14), these are some of coprime numbers from 1 to 100.
When we consider any pair of the above, when we determine the greatest common factor will be 1.
Note: Here we should not get confused by seeing the coprime, because the prime is different from coprime. Here prime numbers will come under the category of natural numbers. The pair is an ordered pair and which is written in common braces ( ).
Complete step-by-step solution:
In mathematics we have different forms of numbers namely, natural numbers, whole numbers, integers, rational numbers, prime numbers, even numbers etc.,
Now we know the definition of coprime number
‘Co’ refers to a ‘pair’. So, we can define a pair of integers, let's say a and b, as coprime or primes to each other or mutually prime or relatively prime if:
the only positive integer that divides both of them to give a remainder zero is 1
In other words, the HCF of the two numbers is 1
Coprime numbers are denoted as \[\gcd (a,b) = 1\] or \[(a,b) = 1\] or as “a is prime to b”.
The coprime numbers from 1 to 100
(2,3), (3,5), (5,7), (11,13), (17,19), (21,22), (29,31), (41,43), (59,61), (71,73), (87,88), (99,100), (28,57), (13,14), these are some of coprime numbers from 1 to 100.
When we consider any pair of the above, when we determine the greatest common factor will be 1.
Note: Here we should not get confused by seeing the coprime, because the prime is different from coprime. Here prime numbers will come under the category of natural numbers. The pair is an ordered pair and which is written in common braces ( ).
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
One lakh eight thousand how can we write it in num class 7 maths CBSE

How many crores make 10 million class 7 maths CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

Fill in the blanks with appropriate modals a Drivers class 7 english CBSE

The doctrine of lapse policy was introduced by A Lord class 7 social science CBSE

The Pallava king who adopted the epithet of Vichitrachitta class 7 social science CBSE
