
The phase difference between current and voltage in an AC circuit is $\dfrac{\pi }{4}$ radian. If the frequency of AC is 50Hz, then the phase difference is equivalent to the time difference of
A. 0.75s
B. 10.5s
C. 2.5ms
D. 0.25ms
Answer
558k+ views
Hint – In order to solve this problem we need to find the time period of one revolution and then find the time period of $\dfrac{\pi }{4}$ revolution. Doing this will solve your problem.
Formula used - ${\text{Time}}\,{\text{period = }}\dfrac{{\text{1}}}{{{\text{frequency}}}}$.
Complete Step-by-Step solution:
Frequency of the circuit is given as 50Hz.
Therefore the time period of the wave is $\dfrac{1}{f} = \dfrac{1}{{50}} = 0.02s$
As we know that in one time period the revolution is $2\pi $.
Then $\dfrac{\pi }{4}$ has the time period of $\dfrac{{0.02}}{{2\pi }}{\text{x}}\dfrac{\pi }{4} = 0.0025s = 2.5ms$.
Hence, the correct option is C.
Note – To solve such problems we need to know that in AC circuit the equations are sinusoidal and the frequency is inverse of time period and when there is the difference between the phases of current and voltage then the circuit is not purely resistive and when there is no phase difference then the circuit is purely resistive. To solve this problem you only need to know that the inverse of frequency is the time period and vice-versa.
Formula used - ${\text{Time}}\,{\text{period = }}\dfrac{{\text{1}}}{{{\text{frequency}}}}$.
Complete Step-by-Step solution:
Frequency of the circuit is given as 50Hz.
Therefore the time period of the wave is $\dfrac{1}{f} = \dfrac{1}{{50}} = 0.02s$
As we know that in one time period the revolution is $2\pi $.
Then $\dfrac{\pi }{4}$ has the time period of $\dfrac{{0.02}}{{2\pi }}{\text{x}}\dfrac{\pi }{4} = 0.0025s = 2.5ms$.
Hence, the correct option is C.
Note – To solve such problems we need to know that in AC circuit the equations are sinusoidal and the frequency is inverse of time period and when there is the difference between the phases of current and voltage then the circuit is not purely resistive and when there is no phase difference then the circuit is purely resistive. To solve this problem you only need to know that the inverse of frequency is the time period and vice-versa.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Five things I will do to build a great India class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

10 examples of evaporation in daily life with explanations
