
The value of Boltzmann constant is: (In erg $K^{-1}$ molecul$e^{-1}$)
A. $1.38 \times \mathop {10}\nolimits^{ - 16}$
B. $1.38 \times \mathop {10}\nolimits^{ - 23}$
C. $8.314 \times \mathop {10}\nolimits^7$
D. $6.023 \times \mathop {10}\nolimits^{ - 16}$
Answer
180k+ views
Hint: It is a proportionality factor that relates average kinetic energy of particles in gas with thermodynamic temperature of gas.
Complete step by step solution:
It is known that Boltzmann constant ($k_b$), is a physical constant relating the average kinetic energy of particles in a gas with the temperature of the gas.
It is sort of a conversion type.
For simple ideal gases whose molecules are of mass m and have only kinetic energy, the Boltzmann constant k relates the average kinetic energy per molecule to the absolute temperature. The relationship can be given by: $\dfrac{{m{v^2}}}{2} = \dfrac{3}{2}kT$ where ${v^2}$ is the average of the squared velocity of gas molecules and $T$is the absolute temperature(in kelvin).
Also, it is the gas constant R divided by the Avogadro number NA : ${K_b} = \dfrac{R}{{{N_A}}}$.
Now we can calculate the value of Kb by using the formula: ${K_b} = \dfrac{R}{{{N_A}}}$
Calculation:
We know value of gas constant, $R = 8.3144J/K/mol$
Also, value of Avogadro number, ${N_A} = 6.02214 \times {10^{23}}$
Therefore, Boltzmann constant, ${K_b} = \dfrac{R}{{{N_A}}} = \dfrac{{8.3144}}{{6.02214 \times {{10}^{23}}}} = 1.3806 \times {10^{ - 23}}$ J/K/molecule
Now to convert the above calculated value of $K_b$ from J/K/molecule to erg $K^{-1}$ molecul$e^{-1}$, we have to multiply the above calculated value by 107:
${k_b} = \left( {1.3806 \times {{10}^{ - 23}}} \right)\left( {{{10}^7}} \right) = 1.3806 \times {10^{ - 16}}$ erg $K^{-1}$ molecul$e^{-1}$.
Hence, from above points we can now easily conclude that option A is the correct option.
Note: It should be remembered that Boltzmann constant is measured by measuring atomic speed of gas or speed of sound of gas. Also, one should remember the dimensional formula for Boltzmann’s constant which is ${M^2}{L^2}{T^{ - 2}}{\theta ^{ - 1}}$.
Complete step by step solution:
It is known that Boltzmann constant ($k_b$), is a physical constant relating the average kinetic energy of particles in a gas with the temperature of the gas.
It is sort of a conversion type.
For simple ideal gases whose molecules are of mass m and have only kinetic energy, the Boltzmann constant k relates the average kinetic energy per molecule to the absolute temperature. The relationship can be given by: $\dfrac{{m{v^2}}}{2} = \dfrac{3}{2}kT$ where ${v^2}$ is the average of the squared velocity of gas molecules and $T$is the absolute temperature(in kelvin).
Also, it is the gas constant R divided by the Avogadro number NA : ${K_b} = \dfrac{R}{{{N_A}}}$.
Now we can calculate the value of Kb by using the formula: ${K_b} = \dfrac{R}{{{N_A}}}$
Calculation:
We know value of gas constant, $R = 8.3144J/K/mol$
Also, value of Avogadro number, ${N_A} = 6.02214 \times {10^{23}}$
Therefore, Boltzmann constant, ${K_b} = \dfrac{R}{{{N_A}}} = \dfrac{{8.3144}}{{6.02214 \times {{10}^{23}}}} = 1.3806 \times {10^{ - 23}}$ J/K/molecule
Now to convert the above calculated value of $K_b$ from J/K/molecule to erg $K^{-1}$ molecul$e^{-1}$, we have to multiply the above calculated value by 107:
${k_b} = \left( {1.3806 \times {{10}^{ - 23}}} \right)\left( {{{10}^7}} \right) = 1.3806 \times {10^{ - 16}}$ erg $K^{-1}$ molecul$e^{-1}$.
Hence, from above points we can now easily conclude that option A is the correct option.
Note: It should be remembered that Boltzmann constant is measured by measuring atomic speed of gas or speed of sound of gas. Also, one should remember the dimensional formula for Boltzmann’s constant which is ${M^2}{L^2}{T^{ - 2}}{\theta ^{ - 1}}$.
Recently Updated Pages
Learn Conversion of Galvanometer into Ammeter and Voltmeter for JEE Main

Electric Field Due To Uniformly Charged Ring - JEE Main 2025

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

IIT Full Form

Reaction of Metals With Acids for JEE

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 5 Thermodynamics - 2025-26

Redox Reaction Class 11 Chemistry Chapter 7 CBSE Notes - 2025-26

JEE Advanced 2026 Notes

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26
