
What will be the value of electric field at the Centre of the electric dipole:
A. Zero
B. Equal to the electric field due to one charge at the centre.
C. Twice the electric field due to one charge at the centre.
D. Half the value of the electric field due to one charge at the centre.
Answer
451.5k+ views
Hint: Let us first know about the Electric field. A physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them, is known as an electric field (also known as an E-field). It can also refer to a system of charged particles' physical field. Electric fields are created by electric charges or magnetic fields that change over time. The electromagnetic force, one of nature's four fundamental forces (or interactions), manifests itself in both electric and magnetic fields.
Complete step by step answer:
Let us know about the Dipole Moment. The dipole moment, a vector quantity, can be used to characterize dipoles, whether electric or magnetic. The electric dipole moment, in the case of a simple electric dipole, points from the negative charge to the positive charge and has a magnitude equal to the strength of each charge multiplied by the distance between the charges.
Using the equation, we can calculate the electric field created by a point charge.
$E = \dfrac{{kQ}}{{{a^2}}}$
${E^1} = \dfrac{{kQ}}{{{a^2}}} + \dfrac{{kQ}}{{{a^2}}} \\
\Rightarrow {E^1} = 2\dfrac{{kQ}}{{{a^2}}}$
$\therefore {E^1} = 2E$
So, option C is correct.
Note: Let us know more about electrical dipoles. In every electrical system, an electric dipole is used to separate the positive and negative charges. A pair of electric charges of equal magnitude but opposite sign separated by a typically small distance is a simple example of this system.
Complete step by step answer:
Let us know about the Dipole Moment. The dipole moment, a vector quantity, can be used to characterize dipoles, whether electric or magnetic. The electric dipole moment, in the case of a simple electric dipole, points from the negative charge to the positive charge and has a magnitude equal to the strength of each charge multiplied by the distance between the charges.

Using the equation, we can calculate the electric field created by a point charge.
$E = \dfrac{{kQ}}{{{a^2}}}$

${E^1} = \dfrac{{kQ}}{{{a^2}}} + \dfrac{{kQ}}{{{a^2}}} \\
\Rightarrow {E^1} = 2\dfrac{{kQ}}{{{a^2}}}$
$\therefore {E^1} = 2E$
So, option C is correct.
Note: Let us know more about electrical dipoles. In every electrical system, an electric dipole is used to separate the positive and negative charges. A pair of electric charges of equal magnitude but opposite sign separated by a typically small distance is a simple example of this system.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What is transplantation in agriculture class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Who discovered the cell and how class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
