
In a transverse wave the distance between a crest and through at the same place is $1.0{\rm{ cm}}$. The next crest appears at the same place after the interval of $0.4\;{\rm{s}}$. The maximum speed of the vibrating particles in the medium is:
A) $\dfrac{{3\pi }}{2}{\rm{cm/s}}$
B) $\dfrac{{5\pi }}{2}{\rm{cm/s}}$
C) $\dfrac{\pi }{2}{\rm{cm/s}}$
D) $2\pi \;{\rm{cm/s}}$
Answer
180k+ views
Hint: The maximum speed of the vibrating particles can be calculated with the help of the general equation of a wave. If we differentiate the general equation of a wave, we can get the general equation of velocity.
Complete step by step solution:
The distance between the crest and trough is $1.0{\rm{ cm}}$ which means that the amplitude is half of $1.0{\rm{ cm}}$. This can evaluate the value of amplitude as given below,
$A$ = $\dfrac{{1{\rm{ cm}}}}{2}\\$
$A$ = $0.5\;{\rm{cm}}$
The interval at which the next crest appears is nothing but the time period, therefore, the time period of the given wave is $0.4\;{\rm{s}}$.
We can calculate the value of angular frequency with the help of time period.
$\omega = \dfrac{{2\pi }}{T}$
We will now substitute the known values in the above equation of angular frequency.
$\omega = \dfrac{{2\pi }}{{0.4\;{\rm{s}}}}\\$
$\Rightarrow$ $5\pi \;{\rm{rad/s}}$
Here, the time interval is $T$.
We know that the general equation of a wave is given as $y = A\sin( \omega t + kx)$.
So, for maximum velocity, we will differentiate the above equation with respect to time.
$v$ = $\dfrac{{dy}}{{dt}}\\$
$\Rightarrow$ $\dfrac{{d\left( {A\sin \omega t + kx} \right)}}{{dt}}\\$
$\Rightarrow$ $A\omega \left( {\cos \omega t + kx} \right)$
The maximum value of the equation is \[{v_{\max }} = A\omega \].
The equation of maximum velocity is evaluated and now we can substitute the values to get maximum velocity.
${v_{\max }} = 0.5 \times 5\pi \\$
$\Rightarrow$ $\dfrac{{5\pi }}{2}\;{\rm{cm/s}}$
Thus, the maximum speed of the vibrating particles in the given medium is calculated to be $\dfrac{{5\pi }}{2}\;{\rm{cm/s}}$.
Thus, From the given options, only option B is correct.
Note: The step in which the equation for maximum velocity comes to be \[A\omega \] is a tricky method. We should remember that the maximum value of any sine or cosine function is 1, so in order to get maximum value of the equation \[A\omega \left( {\cos \omega t + kx} \right)\], the cosine function is taken as 1.
Complete step by step solution:
The distance between the crest and trough is $1.0{\rm{ cm}}$ which means that the amplitude is half of $1.0{\rm{ cm}}$. This can evaluate the value of amplitude as given below,
$A$ = $\dfrac{{1{\rm{ cm}}}}{2}\\$
$A$ = $0.5\;{\rm{cm}}$
The interval at which the next crest appears is nothing but the time period, therefore, the time period of the given wave is $0.4\;{\rm{s}}$.
We can calculate the value of angular frequency with the help of time period.
$\omega = \dfrac{{2\pi }}{T}$
We will now substitute the known values in the above equation of angular frequency.
$\omega = \dfrac{{2\pi }}{{0.4\;{\rm{s}}}}\\$
$\Rightarrow$ $5\pi \;{\rm{rad/s}}$
Here, the time interval is $T$.
We know that the general equation of a wave is given as $y = A\sin( \omega t + kx)$.
So, for maximum velocity, we will differentiate the above equation with respect to time.
$v$ = $\dfrac{{dy}}{{dt}}\\$
$\Rightarrow$ $\dfrac{{d\left( {A\sin \omega t + kx} \right)}}{{dt}}\\$
$\Rightarrow$ $A\omega \left( {\cos \omega t + kx} \right)$
The maximum value of the equation is \[{v_{\max }} = A\omega \].
The equation of maximum velocity is evaluated and now we can substitute the values to get maximum velocity.
${v_{\max }} = 0.5 \times 5\pi \\$
$\Rightarrow$ $\dfrac{{5\pi }}{2}\;{\rm{cm/s}}$
Thus, the maximum speed of the vibrating particles in the given medium is calculated to be $\dfrac{{5\pi }}{2}\;{\rm{cm/s}}$.
Thus, From the given options, only option B is correct.
Note: The step in which the equation for maximum velocity comes to be \[A\omega \] is a tricky method. We should remember that the maximum value of any sine or cosine function is 1, so in order to get maximum value of the equation \[A\omega \left( {\cos \omega t + kx} \right)\], the cosine function is taken as 1.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
Collision - Important Concepts and Tips for JEE

Current Loop as Magnetic Dipole and Its Derivation for JEE

Elastic Collisions in One Dimension - JEE Important Topic

The system shown is just on the verge of slipping The class 11 physics JEE_Main

Find the frictional force between the two blocks in class 11 physics JEE_MAIN

JEE Main Eligibility Criteria 2025

Other Pages
NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids - 2025-26

JEE Advanced 2025 Revision Notes for Practical Organic Chemistry

Electron Gain Enthalpy and Electron Affinity for JEE

Important Days and Dates in August

MBBS Seats in India 2025: State & College Wise Updates

NEET Cut Off Tamil Nadu 2025: Govt & Private MBBS/BDS College List
