
The solar constant is defined as the energy incident per unit area per second. The dimensional formula for solar constant is:
$
{\text{(A) [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{\text{]}} \\
{\text{(B) [ML}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}} \\
{\text{(C) [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}} \\
{\text{(D) [M}}{{\text{L}}^{\text{0}}}{{\text{T}}^{{\text{ - 3}}}}{\text{]}} \\
$
Answer
180k+ views
Hint: For finding the dimensional formula of any quantity first of all write the formula related to that quantity. Here the solar constant is defined as the energy incident per unit area per second. Write the dimensional formula of the power and the dimensional formula of area and then simplify to get the dimensional formula of solar constant.
Complete solution:
Solar constant is defined as the total radiation energy received from the Sun per unit of time per unit of area.
Units of solar constant ${\text{ = }}\dfrac{{{\text{power}}}}{{{\text{area}}}}$
The S.I. unit of power is watt (represented by W)
S.I. unit of area is metre square (represented by ${{\text{m}}^{\text{2}}}$)
Thus, the S.I. units of solar constant ${\text{ = }}\dfrac{{\text{W}}}{{{{\text{m}}^{\text{2}}}}}$
A body is said to have power of ${\text{1 Watt}}$ if the body does work of ${\text{1 Joule}}$ in ${\text{1 second}}$.
So, ${\text{1 Watt = }}\dfrac{{{\text{1 joule}}}}{{{\text{1 sec}}}}$
Also, One joule of work is done on an object when a force of one newton (represented by ${\text{1 N}}$) is applied over a distance of one meter (represented by ${\text{1 m}}$).
So, ${\text{1 joule = }}\dfrac{{{\text{1 newton}}}}{{{\text{1 metre}}}}$
Thus, the S.I. units of solar constant is $\dfrac{{{\text{N m}}}}{{{\text{s }}{{\text{m}}^2}}}$.
Now the dimensional formula of force whose S.I. unit is newton is given by ${\text{[ML}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$
Dimensional formula of distance whose S.I. unit is metre is given by ${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{\text{0}}}{\text{]}}$
Dimensional formula of time whose S.I. units is second is given by ${\text{[ML}}{{\text{T}}^1}{\text{]}}$
Thus, dimensional formula of solar constant is $\dfrac{{{\text{[}}{{\text{M}}^1}{{\text{L}}^1}{{\text{T}}^{{\text{ - 2}}}}{\text{][L]}}}}{{{\text{[}}{{\text{T}}^1}{\text{][}}{{\text{L}}^{\text{2}}}{\text{]}}}}{\text{ = [}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^{{\text{ - 3}}}}{\text{]}}$
The dimensional formula for solar constant is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^{{\text{ - 3}}}}{\text{]}}$
Therefore, option (C) is the correct choice.
Note: Dimensions are denoted with square brackets. The dimensional formula of length, mass, time, electric current, thermodynamic temperature, luminous intensity and amount of substance are [L], [M], [A], [K], [Cd] and [mol] respectively. These are the quantities from which all other secondary quantities can be obtained.
Complete solution:
Solar constant is defined as the total radiation energy received from the Sun per unit of time per unit of area.
Units of solar constant ${\text{ = }}\dfrac{{{\text{power}}}}{{{\text{area}}}}$
The S.I. unit of power is watt (represented by W)
S.I. unit of area is metre square (represented by ${{\text{m}}^{\text{2}}}$)
Thus, the S.I. units of solar constant ${\text{ = }}\dfrac{{\text{W}}}{{{{\text{m}}^{\text{2}}}}}$
A body is said to have power of ${\text{1 Watt}}$ if the body does work of ${\text{1 Joule}}$ in ${\text{1 second}}$.
So, ${\text{1 Watt = }}\dfrac{{{\text{1 joule}}}}{{{\text{1 sec}}}}$
Also, One joule of work is done on an object when a force of one newton (represented by ${\text{1 N}}$) is applied over a distance of one meter (represented by ${\text{1 m}}$).
So, ${\text{1 joule = }}\dfrac{{{\text{1 newton}}}}{{{\text{1 metre}}}}$
Thus, the S.I. units of solar constant is $\dfrac{{{\text{N m}}}}{{{\text{s }}{{\text{m}}^2}}}$.
Now the dimensional formula of force whose S.I. unit is newton is given by ${\text{[ML}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$
Dimensional formula of distance whose S.I. unit is metre is given by ${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{\text{0}}}{\text{]}}$
Dimensional formula of time whose S.I. units is second is given by ${\text{[ML}}{{\text{T}}^1}{\text{]}}$
Thus, dimensional formula of solar constant is $\dfrac{{{\text{[}}{{\text{M}}^1}{{\text{L}}^1}{{\text{T}}^{{\text{ - 2}}}}{\text{][L]}}}}{{{\text{[}}{{\text{T}}^1}{\text{][}}{{\text{L}}^{\text{2}}}{\text{]}}}}{\text{ = [}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^{{\text{ - 3}}}}{\text{]}}$
The dimensional formula for solar constant is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^{{\text{ - 3}}}}{\text{]}}$
Therefore, option (C) is the correct choice.
Note: Dimensions are denoted with square brackets. The dimensional formula of length, mass, time, electric current, thermodynamic temperature, luminous intensity and amount of substance are [L], [M], [A], [K], [Cd] and [mol] respectively. These are the quantities from which all other secondary quantities can be obtained.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Mass and Weight

JEE Main 2023 April 13 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

Trending doubts
Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Current Loop as Magnetic Dipole and Its Derivation for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Find the frictional force between the two blocks in class 11 physics JEE_MAIN

Other Pages
JEE Advanced 2026 Notes

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids - 2025-26

The system shown is just on the verge of slipping The class 11 physics JEE_Main

JEE Advanced 2025 Revision Notes for Practical Organic Chemistry

Important Days and Dates in August

MBBS Seats in India 2025: State & College Wise Updates
