
Establish the relation between moment of inertia and angular momentum. Define moment of inertia on the basis of this relation.
Answer
467.9k+ views
Hint: To calculate the relation between moment of inertia and angular momentum, we have to know about the formula of angular momentum and moment of inertia in terms of mass, velocity i.e.,
Angular momentum $L = mvr$
Angular velocity $\omega = \dfrac{v}{r}$
Complete step by step solution:
Angular momentum is the rotational equivalent of linear momentum i.e.,
Angular momentum L $ = $ radius (r) $ \times $ linear momentum (p) …..(1)
Linear momentum p is the product of mass and velocity i.e.,
$p = m \times v$ …..(2)
From equation (1) and (2)
$L = mvr$
Now dividing and multiplying by r
$L = mvr \times \dfrac{r}{r}$
$L = (m{r^2})\left( {\dfrac{v}{r}} \right)$ …..(3)
We know that angular velocity
$\omega = \dfrac{v}{r}$ …..(4)
From equation (3) & (4)
$L = (m{r^2})\omega $
Here $m{r^2}$ is known as the moment of inertia I.
So, $\boxed{L = I\omega }$
Above expression shows the relation between moment of inertia and angular momentum.
According to above formula we can say that moment of inertia I is a quantity expressing a body’s tendency to resist angular acceleration which is the sum of the products of the mass of each particle in the body with the square of its distance from the axis of rotation i.e., $\boxed{I = m{r^2}}$
Unit $ \to kg{m^2}$
Dimension $ \to [M{L^2}]$
It is a linear quantity.
Note: To establish the relation between any 2 physical quantities we must know about the definitions of them and some basic relation related to them.
Angular momentum $L = mvr$
Angular velocity $\omega = \dfrac{v}{r}$
Complete step by step solution:
Angular momentum is the rotational equivalent of linear momentum i.e.,
Angular momentum L $ = $ radius (r) $ \times $ linear momentum (p) …..(1)
Linear momentum p is the product of mass and velocity i.e.,
$p = m \times v$ …..(2)
From equation (1) and (2)
$L = mvr$
Now dividing and multiplying by r
$L = mvr \times \dfrac{r}{r}$
$L = (m{r^2})\left( {\dfrac{v}{r}} \right)$ …..(3)
We know that angular velocity
$\omega = \dfrac{v}{r}$ …..(4)
From equation (3) & (4)
$L = (m{r^2})\omega $
Here $m{r^2}$ is known as the moment of inertia I.
So, $\boxed{L = I\omega }$
Above expression shows the relation between moment of inertia and angular momentum.
According to above formula we can say that moment of inertia I is a quantity expressing a body’s tendency to resist angular acceleration which is the sum of the products of the mass of each particle in the body with the square of its distance from the axis of rotation i.e., $\boxed{I = m{r^2}}$
Unit $ \to kg{m^2}$
Dimension $ \to [M{L^2}]$
It is a linear quantity.
Note: To establish the relation between any 2 physical quantities we must know about the definitions of them and some basic relation related to them.
Recently Updated Pages
Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is the opposite of entropy class 11 chemistry CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE
