
If the distance of earth and sun reduces to one fourth of its present value, then the length of the year will become:
A) $\dfrac{1}{6}$of present year
B) $\dfrac{1}{8}$ of present year
C) $\dfrac{1}{4}$ of present year
D) $\dfrac{1}{2}$ of present year
Answer
536.1k+ views
Hint
One year is the time period of Earth orbiting around the Sun. The relation between the distance between 2 objects under mutual gravity and the time periods of their orbits is given by Kepler’s law. We will use it to find the value of a new time period or year with respect to the original year.
Complete step by step answer
In this question we are given that distance between earth and sun is reduced by a factor of 4, kepler’s law of planetary motion states that:
${T^2} \propto {R^3}$
${T^2}\, = \,k{R^3}$ --- (1)
Where k is a constant, when the value of R reduces to one fourth of its original value, then
${T_N}^2\, = \,k\dfrac{{{R^3}}}{{{4^3}}}$ ---(2)
Dividing (2) by (1) we get,
$ \dfrac{{{T_N}^2}}{{{T^2}}}\, = \,\dfrac{{{R^3}}}{{{4^3}{R^3}}} \\
{T_N}\, = \,\dfrac{T}{{{4^{3/2}}}} \\
{T_N}\, = \,\dfrac{T}{8} \\ $
Therefore the option with the correct answer is option B.
Note
Remembering the Kepler's third law can be difficult. So a student can easily derive it by equating the centrifugal force and the Gravitational force on Earth
$ \Rightarrow \dfrac{{GMm}}{{{r^2}}} = m\,{\omega ^2}r$
$ \Rightarrow \dfrac{{GMm}}{{{r^3}}} = m\,{\left( {\dfrac{{2\pi }}{T}} \right)^2}$
$ \Rightarrow {r^3} \propto {T^2}$
The value of constant k in this relation is equal to $\dfrac{{4{\pi ^2}}}{{Gm}}$, where G is the gravitational constant and m is the mass of planet around which the other is revolving, in this case it should be sun. This can be found by equating the centripetal force between two planetary objects to the force between 2 bodies.
One year is the time period of Earth orbiting around the Sun. The relation between the distance between 2 objects under mutual gravity and the time periods of their orbits is given by Kepler’s law. We will use it to find the value of a new time period or year with respect to the original year.
Complete step by step answer
In this question we are given that distance between earth and sun is reduced by a factor of 4, kepler’s law of planetary motion states that:
${T^2} \propto {R^3}$
${T^2}\, = \,k{R^3}$ --- (1)
Where k is a constant, when the value of R reduces to one fourth of its original value, then
${T_N}^2\, = \,k\dfrac{{{R^3}}}{{{4^3}}}$ ---(2)
Dividing (2) by (1) we get,
$ \dfrac{{{T_N}^2}}{{{T^2}}}\, = \,\dfrac{{{R^3}}}{{{4^3}{R^3}}} \\
{T_N}\, = \,\dfrac{T}{{{4^{3/2}}}} \\
{T_N}\, = \,\dfrac{T}{8} \\ $
Therefore the option with the correct answer is option B.
Note
Remembering the Kepler's third law can be difficult. So a student can easily derive it by equating the centrifugal force and the Gravitational force on Earth
$ \Rightarrow \dfrac{{GMm}}{{{r^2}}} = m\,{\omega ^2}r$
$ \Rightarrow \dfrac{{GMm}}{{{r^3}}} = m\,{\left( {\dfrac{{2\pi }}{T}} \right)^2}$
$ \Rightarrow {r^3} \propto {T^2}$
The value of constant k in this relation is equal to $\dfrac{{4{\pi ^2}}}{{Gm}}$, where G is the gravitational constant and m is the mass of planet around which the other is revolving, in this case it should be sun. This can be found by equating the centripetal force between two planetary objects to the force between 2 bodies.
Recently Updated Pages
Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is the opposite of entropy class 11 chemistry CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE
