Exponents and Powers - Exercise-wise Questions and Answers For Class 7 Maths - Free PDF Download
Class 7 Maths NCERT Solutions for Chapter 11 Exponents and Powers, provided by Vedantu, offer a comprehensive and straightforward explanation of key concepts. This chapter covers the fundamental rules and properties of exponents, making it crucial for understanding higher-level math topics. The solutions are designed to help students grasp the basics, such as multiplying and dividing powers, using standard form, and understanding negative exponents.


The focus of this class 7 maths Ch 11 is on simplifying expressions involving exponents and powers, which is essential for solving complex mathematical problems efficiently. Students should pay particular attention to the laws of exponents, as these form the foundation for many algebraic operations. Access the latest CBSE Class 7 Maths Syllabus here.
Glance on Maths Chapter 11 Class 7 - Exponents and Powers
The chapter focuses on understanding exponents and powers to express large numbers in simplified form.
Key topics include the laws of exponents such as multiplication and division of powers, power of a power, and negative exponents.
Important concepts involve expressing numbers in standard form and scientific notation, and simplifying expressions involving exponents.
Foundational skills are essential for algebra and higher-level math, emphasizing the mastery of rules and properties of exponents.
We can use exponents mainly to cut short the long number. For example, 10,000 can be written as 104
If the bases are equal, the exponents will follow some basic laws.
am *an = am+n
am / an = am-n
(am)n = am+n
a0 = 1
-1even number = 1
-1odd number = -1
am *bm = (ab)m
This article contains chapter notes, important questions, exemplar solutions, exercises and video links for Chapter 11 - Exponents and Powers, which you can download as PDFs.
There are three exercises (17 fully solved questions) in exponents and powers class 7.
Access Exercise Wise NCERT Solutions for Chapter 11 Maths Class 7
S.No. | Current Syllabus Exercises of Class 7 Maths Chapter 11 |
1 | NCERT Solutions of Class 7 Maths Exponents and Powers Exercise 11.1 |
2 | NCERT Solutions of Class 7 Maths Exponents and Powers Exercise 11.2 |
3 | NCERT Solutions of Class 7 Maths Exponents and Powers Exercise 11.3 |
Exercises Under NCERT Solutions for Class 7 Maths Chapter 11 Exponents and Powers
Exercise 11.1
Expressing numbers in exponential form (e.g., writing 64 as ${{\text{2}}^{\text{6}}}$)
Identifying the base and exponent in exponential terms (e.g., recognizing 5 in ${{\text{5}}^{\text{3}}}$ as the base)
Comparing numbers written in exponential form
Exercise 11.2
Simplifying exponential expressions using basic rules (like am * an = am+n)
Evaluating powers of numbers (e.g., finding the value of ${{\text{3}}^{\text{4}}}$)
Using order of operations with exponents
Exercise 11.3
Introduction to negative exponents
Access NCERT Solutions for Class 7 Maths Chapter 11 – Exponents and Powers
Exercise 11.1
1. Find the value of:
i. ${{\text{2}}^{\text{6}}}$
Ans: We have to find the value of ${{\text{2}}^{\text{6}}}$. It is $\text{2}$ raised to the power of $\text{6}$.
$\therefore {{\text{2}}^{\text{6}}}\text{ = 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2}$
$\Rightarrow {{\text{2}}^{\text{6}}}\text{ = 64}$
Hence, the value of ${{\text{2}}^{\text{6}}}$ is $\text{64}$.
ii. ${{\text{9}}^{\text{3}}}$
Ans: We have to find the value of ${{\text{9}}^{\text{3}}}$. It is $\text{9}$ raised to the power of $\text{3}$.
$\therefore {{\text{9}}^{\text{3}}}\text{ = 9 }\!\!\times\!\!\text{ 9 }\!\!\times\!\!\text{ 9}$
$\Rightarrow {{\text{9}}^{\text{3}}}\text{ = 729}$
Hence, the value of ${{\text{9}}^{\text{3}}}$ is $\text{729}$.
iii. $\text{1}{{\text{1}}^{\text{2}}}$
Ans: We have to find the value of $\text{1}{{\text{1}}^{\text{2}}}$. It is $\text{11}$ raised to the power of $\text{2}$.
$\therefore \text{1}{{\text{1}}^{\text{2}}}\text{ = 11 }\!\!\times\!\!\text{ 11}$
$\Rightarrow \text{1}{{\text{1}}^{\text{2}}}\text{ = 121}$
Hence, the value of $\text{1}{{\text{1}}^{2}}$ is $\text{121}$.
iv. ${{\text{5}}^{\text{4}}}$
Ans: We have to find the value of ${{\text{5}}^{\text{4}}}$. It is $\text{5}$ raised to the power of $\text{4}$.
$\therefore {{\text{5}}^{\text{4}}}\text{ = 5 }\!\!\times\!\!\text{ 5 }\!\!\times\!\!\text{ 5 }\!\!\times\!\!\text{ 5}$
$\Rightarrow {{\text{5}}^{\text{4}}}\text{ = 625}$
Hence, the value of ${{\text{5}}^{\text{4}}}$ is $\text{625}$.
2. Express the following in exponential form:
i. $\text{6 }\!\!\times\!\!\text{ 6 }\!\!\times\!\!\text{ 6 }\!\!\times\!\!\text{ 6}$
Ans: We have to find the exponential form of $\text{6 }\!\!\times\!\!\text{ 6 }\!\!\times\!\!\text{ 6 }\!\!\times\!\!\text{ 6}$.
It is $\text{6}$ multiplied four times. So, it is $\text{6}$ raised to the power of $\text{4}$.
$\therefore \text{6 }\!\!\times\!\!\text{ 6 }\!\!\times\!\!\text{ 6 }\!\!\times\!\!\text{ 6 = }{{\text{6}}^{\text{4}}}$
Hence, $\text{6 }\!\!\times\!\!\text{ 6 }\!\!\times\!\!\text{ 6 }\!\!\times\!\!\text{ 6}$ can be written as ${{\text{6}}^{\text{4}}}$.
ii. $\text{t }\!\!\times\!\!\text{ t}$
Ans: We have to find the exponential form of $\text{t }\!\!\times\!\!\text{ t}$.
It is $\text{t}$ multiplied two times. So, it is $\text{t}$ raised to the power of $\text{2}$.
$\therefore \text{t }\!\!\times\!\!\text{ t = }{{\text{t}}^{\text{2}}}$
Hence, $\text{t }\!\!\times\!\!\text{ t}$ can be written as ${{\text{t}}^{\text{2}}}$.
iii. $\text{b }\!\!\times\!\!\text{ b }\!\!\times\!\!\text{ b }\!\!\times\!\!\text{ b}$
Ans: We have to find the exponential form of $\text{b }\!\!\times\!\!\text{ b }\!\!\times\!\!\text{ b }\!\!\times\!\!\text{ b}$.
It is $\text{b}$ multiplied four times. So, it is $\text{b}$ raised to the power of $\text{4}$.
$\therefore \text{b }\!\!\times\!\!\text{ b }\!\!\times\!\!\text{ b }\!\!\times\!\!\text{ b = }{{\text{b}}^{\text{4}}}$
Hence, $\text{b }\!\!\times\!\!\text{ b }\!\!\times\!\!\text{ b }\!\!\times\!\!\text{ b}$ can be written as ${{\text{b}}^{\text{4}}}$.
iv. $\text{5 }\!\!\times\!\!\text{ 5 }\!\!\times\!\!\text{ 7 }\!\!\times\!\!\text{ 7 }\!\!\times\!\!\text{ 7}$
Ans: We have to find the exponential form of $\text{5 }\!\!\times\!\!\text{ 5 }\!\!\times\!\!\text{ 7 }\!\!\times\!\!\text{ 7 }\!\!\times\!\!\text{ 7}$.
It is $\text{5}$ multiplied two times and $\text{7}$ multiplied three times. So, it is $\text{5}$ raised to the power of $\text{2}$ multiplied by $\text{7}$ raised to the power of $\text{3}$.
$\therefore \text{5 }\!\!\times\!\!\text{ 5 }\!\!\times\!\!\text{ 7 }\!\!\times\!\!\text{ 7 }\!\!\times\!\!\text{ 7 = }{{\text{5}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{7}}^{\text{3}}}$
Hence, $\text{5 }\!\!\times\!\!\text{ 5 }\!\!\times\!\!\text{ 7 }\!\!\times\!\!\text{ 7 }\!\!\times\!\!\text{ 7}$ can be written as ${{\text{5}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{7}}^{\text{3}}}$.
v. $\text{2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ a }\!\!\times\!\!\text{ a}$
Ans: We have to find the exponential form of $\text{2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ a }\!\!\times\!\!\text{ a}$.
It is $\text{2}$ multiplied two times and $\text{a}$ multiplied two times. So, it is $\text{2}$ raised to the power of $\text{2}$ multiplied by $\text{a}$ raised to the power of $\text{2}$.
$\therefore \text{2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ a }\!\!\times\!\!\text{ a = }{{\text{2}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{2}}}$
Hence, $\text{2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ a }\!\!\times\!\!\text{ a}$ can be written as ${{\text{2}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{2}}}$.
vi. $\text{a }\!\!\times\!\!\text{ a }\!\!\times\!\!\text{ a }\!\!\times\!\!\text{ c }\!\!\times\!\!\text{ c }\!\!\times\!\!\text{ c }\!\!\times\!\!\text{ c }\!\!\times\!\!\text{ d}$
Ans: We have to find the exponential form of $\text{a }\!\!\times\!\!\text{ a }\!\!\times\!\!\text{ a }\!\!\times\!\!\text{ c }\!\!\times\!\!\text{ c }\!\!\times\!\!\text{ c }\!\!\times\!\!\text{ c }\!\!\times\!\!\text{ d}$.
It is $\text{a}$ multiplied three times and $\text{c}$ multiplied four times and $\text{d}$ multiplied once.
$\therefore \text{a }\!\!\times\!\!\text{ a }\!\!\times\!\!\text{ a }\!\!\times\!\!\text{ c }\!\!\times\!\!\text{ c }\!\!\times\!\!\text{ c }\!\!\times\!\!\text{ c }\!\!\times\!\!\text{ d = }{{\text{a}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{c}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ d}$
Hence, $\text{a }\!\!\times\!\!\text{ a }\!\!\times\!\!\text{ a }\!\!\times\!\!\text{ c }\!\!\times\!\!\text{ c }\!\!\times\!\!\text{ c }\!\!\times\!\!\text{ c }\!\!\times\!\!\text{ d}$ can be written as ${{\text{a}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{c}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ d}$.
3. Express each of the following numbers using exponential notation:
i. $\text{512}$
Ans: We can write $\text{512}$ as following:
$\text{512 = 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2}$
$\Rightarrow \text{512 = }{{\text{2}}^{\text{9}}}$
Hence, the value of $\text{512}$ in exponential form is ${{\text{2}}^{\text{9}}}$.
ii. $\text{343}$
Ans: We can write $\text{343}$ as following:
$\text{343 = 7 }\!\!\times\!\!\text{ 7 }\!\!\times\!\!\text{ 7}$
$\Rightarrow \text{343 = }{{\text{7}}^{\text{3}}}$
Hence, the value of $\text{343}$ in exponential form is ${{\text{7}}^{\text{3}}}$.
iii. $\text{729}$
Ans: We can write $\text{729}$ as following:
$\text{729 = 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3}$
$\Rightarrow \text{729 = }{{\text{3}}^{\text{6}}}$
Hence, the value of $\text{729}$ in exponential form is ${{\text{3}}^{\text{6}}}$.
iv. $\text{3125}$
Ans: We can write $\text{3125}$ as following:
$\text{3125 = 5 }\!\!\times\!\!\text{ 5 }\!\!\times\!\!\text{ 5 }\!\!\times\!\!\text{ 5 }\!\!\times\!\!\text{ 5}$
$\Rightarrow \text{3125 = }{{\text{5}}^{\text{5}}}$
Hence, the value of $\text{3125}$ in exponential form is ${{\text{5}}^{\text{5}}}$.
4. Identify the greater number, wherever possible, in each of the following:
i. ${{\text{4}}^{\text{3}}}$ and ${{\text{3}}^{\text{4}}}$
Ans: We will first write the values of each of the exponential forms.
${{\text{4}}^{\text{3}}}\text{ = 4 }\!\!\times\!\!\text{ 4 }\!\!\times\!\!\text{ 4 = 64}$
${{\text{3}}^{\text{4}}}\text{ = 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 = 81}$
Since $\text{81 > 64}$, we can say that ${{\text{3}}^{\text{4}}}\text{ > }{{\text{4}}^{\text{3}}}$.
Hence, the greater number is ${{\text{3}}^{\text{4}}}$.
ii. ${{\text{5}}^{\text{3}}}$ or ${{\text{3}}^{\text{5}}}$
Ans: We will first write the values of each of the exponential forms.
${{\text{5}}^{\text{3}}}\text{ = 5 }\!\!\times\!\!\text{ 5 }\!\!\times\!\!\text{ 5 = 125}$
${{\text{3}}^{\text{5}}}\text{ = 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 = 243}$
Since $\text{125 < 243}$, we can say that ${{\text{3}}^{\text{5}}}\text{ > }{{\text{5}}^{\text{3}}}$.
Hence, the greater number is ${{\text{3}}^{\text{5}}}$.
iii. ${{\text{2}}^{\text{8}}}$ or ${{\text{8}}^{\text{2}}}$
Ans: We will first write the values of each of the exponential forms.
${{\text{2}}^{\text{8}}}\text{ = 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 = 256}$
${{\text{8}}^{\text{2}}}\text{ = 8 }\!\!\times\!\!\text{ 8 = 64}$
Since $\text{256 64}$, we can say that ${{\text{2}}^{\text{8}}}\text{ }{{\text{8}}^{\text{2}}}$.
Hence, the greater number is ${{\text{2}}^{\text{8}}}$.
iv. $\text{10}{{\text{0}}^{\text{2}}}$ or ${{\text{2}}^{\text{100}}}$
Ans: We will first write the values of each of the exponential forms.
$\text{10}{{\text{0}}^{\text{2}}}\text{ = 100 }\!\!\times\!\!\text{ 100 = 10000}$
${{\text{2}}^{\text{100}}}\text{ = 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ }...\text{14 times }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ }...$
$\Rightarrow {{\text{2}}^{\text{100}}}\text{ = 16384 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2}\times ...$
Since $\text{10000 < 16384 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ }...$, we can say that ${{\text{2}}^{\text{100}}}\text{ >10}{{\text{0}}^{\text{2}}}$.
Hence, the greater number is ${{\text{2}}^{\text{100}}}$.
v. ${{\text{2}}^{\text{10}}}$ or $\text{1}{{\text{0}}^{\text{2}}}$
Ans: We will first write the values of each of the exponential forms.
${{\text{2}}^{\text{10}}}\text{ = 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 = 1024}$
$\text{1}{{\text{0}}^{\text{2}}}\text{ = 10 }\!\!\times\!\!\text{ 10 = 100}$
Since $\text{1024 100}$, we can say that ${{\text{2}}^{\text{10}}}\text{ 1}{{\text{0}}^{\text{2}}}$.
Hence, the greater number is ${{\text{2}}^{\text{10}}}$.
5. Express each of the following as product of their prime factors:
i. $\text{648}$
Ans: We can write $\text{648}$ as following:
$\text{648 = 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3}$
$\Rightarrow \text{648 = }{{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{4}}}$
Hence, the value of $\text{648}$ in exponential form is ${{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{4}}}$.
ii. $\text{405}$
Ans: We can write $\text{405}$ as following:
$\text{405 = 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 5}$
$\Rightarrow \text{405 = }{{\text{3}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ 5}$
Hence, the value of $\text{405}$ in exponential form is $\text{5 }\!\!\times\!\!\text{ }{{\text{3}}^{\text{4}}}$.
iii. $\text{540}$
Ans: We can write $\text{540}$ as following:
$\text{540 = 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 5}$
$\Rightarrow \text{540 = }{{\text{2}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 5}$
Hence, the value of $\text{540}$ in exponential form is ${{\text{2}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 5}$.
iv. $\text{3600}$
Ans: We can write $\text{3600}$ as following:
$\text{3600 = 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 5 }\!\!\times\!\!\text{ 5}$
$\Rightarrow \text{3600 = }{{\text{2}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{2}}}$
Hence, the value of $\text{3600}$ in exponential form is ${{\text{2}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{2}}}$.
6. Simplify:
i. $\text{2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}$
Ans: We have to simplify $\text{2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}$.
$\therefore \text{2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{ = 2 }\!\!\times\!\!\text{ 10 }\!\!\times\!\!\text{ 10 }\!\!\times\!\!\text{ 10}$
$\Rightarrow \text{2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{ = 2000}$
Hence, the value of $\text{2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}$ is $\text{2000}$.
ii. ${{\text{7}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{2}}}$
Ans: We have to simplify ${{\text{7}}^{2}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{2}}}$.
\[\therefore {{\text{7}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{2}}}\text{ = 7 }\!\!\times\!\!\text{ 7 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2}\]
$\Rightarrow {{\text{7}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{2}}}\text{ = 196}$
Hence, the value of ${{\text{7}}^{2}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{2}}}$ is $\text{196}$.
iii. ${{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 5}$
Ans: We have to simplify ${{\text{2}}^{3}}\text{ }\!\!\times\!\!\text{ 5}$.
\[\therefore {{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 5 = 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 5}\]
$\Rightarrow {{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 5 = 40}$
Hence, the value of ${{\text{2}}^{3}}\text{ }\!\!\times\!\!\text{ 5}$ is $\text{40}$.
iv. $\text{3 }\!\!\times\!\!\text{ }{{\text{4}}^{\text{4}}}$
Ans: We have to simplify $\text{3 }\!\!\times\!\!\text{ }{{\text{4}}^{\text{4}}}$.
\[\therefore \text{3 }\!\!\times\!\!\text{ }{{\text{4}}^{\text{4}}}\text{ = 3 }\!\!\times\!\!\text{ 4 }\!\!\times\!\!\text{ 4 }\!\!\times\!\!\text{ 4 }\!\!\times\!\!\text{ 4}\]
$\Rightarrow \text{3 }\!\!\times\!\!\text{ }{{\text{4}}^{\text{4}}}\text{ = 768}$
Hence, the value of $\text{3 }\!\!\times\!\!\text{ }{{\text{4}}^{\text{4}}}$ is $\text{768}$.
v. $\text{0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}$
Ans: We have to simplify $\text{0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}$.
\[\therefore \text{0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{2}}\text{ = 0 }\!\!\times\!\!\text{ 10 }\!\!\times\!\!\text{ 10}\]
$\Rightarrow \text{0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}\text{ = 0}$
Hence, the value of $\text{0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}$ is $\text{0}$.
vi. ${{\text{5}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{3}}}$
Ans: We have to simplify ${{\text{5}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{3}}}$.
\[\therefore {{\text{5}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{3}}}\text{ = 5 }\!\!\times\!\!\text{ 5 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3}\]
$\Rightarrow {{\text{5}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{3}}}\text{ = 675}$
Hence, the value of ${{\text{5}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{3}}}$ is $\text{675}$.
vii. ${{\text{2}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{2}}}$
Ans: We have to simplify ${{\text{2}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{2}}}$.
\[\therefore {{\text{2}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{2}}}\text{ = 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3}\]
$\Rightarrow {{\text{2}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{2}}}\text{ = 144}$
Hence, the value of ${{\text{2}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{2}}}$ is $\text{144}$.
viii. ${{\text{3}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}$
Ans: We have to simplify ${{\text{3}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}$.
\[\therefore {{\text{3}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ = 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 10 }\!\!\times\!\!\text{ 10 }\!\!\times\!\!\text{ 10 }\!\!\times\!\!\text{ 10}\]
$\Rightarrow {{\text{3}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ = 90000}$
Hence, the value of ${{\text{3}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}$ is $\text{90000}$.
7. Simplify:
i. ${{\left( \text{-4} \right)}^{\text{3}}}$
Ans: We have to simplify ${{\left( \text{-4} \right)}^{\text{3}}}$.
\[\therefore {{\left( \text{-4} \right)}^{\text{3}}}\text{ = }\left( \text{-4} \right)\text{ }\!\!\times\!\!\text{ }\left( \text{-4} \right)\text{ }\!\!\times\!\!\text{ }\left( \text{-4} \right)\]
$\Rightarrow {{\left( \text{-4} \right)}^{\text{3}}}\text{ = -64}$
Hence, the value of ${{\left( \text{-4} \right)}^{\text{3}}}$ is $\text{-64}$.
ii. $\left( \text{-3} \right)\text{ }\!\!\times\!\!\text{ }{{\left( \text{-2} \right)}^{\text{3}}}$
Ans: We have to simplify $\left( \text{-3} \right)\text{ }\!\!\times\!\!\text{ }{{\left( \text{-2} \right)}^{\text{3}}}$.
\[\therefore \left( \text{-3} \right)\text{ }\!\!\times\!\!\text{ }{{\left( \text{-2} \right)}^{\text{3}}}\text{ = }\left( \text{-3} \right)\text{ }\!\!\times\!\!\text{ }\left( \text{-2} \right)\text{ }\!\!\times\!\!\text{ }\left( \text{-2} \right)\text{ }\!\!\times\!\!\text{ }\left( \text{-2} \right)\]
$\Rightarrow \left( \text{-3} \right)\text{ }\!\!\times\!\!\text{ }{{\left( \text{-2} \right)}^{\text{3}}}\text{ = 24}$
Hence, the value of $\left( \text{-3} \right)\text{ }\!\!\times\!\!\text{ }{{\left( \text{-2} \right)}^{\text{3}}}$ is $\text{24}$.
iii. ${{\left( \text{-3} \right)}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\left( \text{-5} \right)}^{\text{2}}}$
Ans: We have to simplify ${{\left( \text{-3} \right)}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\left( \text{-5} \right)}^{\text{2}}}$.
\[\therefore {{\left( \text{-3} \right)}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\left( \text{-5} \right)}^{\text{2}}}\text{ = }\left( \text{-3} \right)\text{ }\!\!\times\!\!\text{ }\left( \text{-3} \right)\text{ }\!\!\times\!\!\text{ }\left( \text{-5} \right)\text{ }\!\!\times\!\!\text{ }\left( \text{-5} \right)\]
$\Rightarrow {{\left( \text{-3} \right)}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\left( \text{-5} \right)}^{\text{2}}}\text{ = 225}$
Hence, the value of ${{\left( \text{-3} \right)}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\left( \text{-5} \right)}^{\text{2}}}$ is $\text{225}$.
iv. ${{\left( \text{-2} \right)}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\left( \text{-10} \right)}^{\text{3}}}$
Ans: We have to simplify ${{\left( \text{-2} \right)}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\left( \text{-10} \right)}^{\text{3}}}$.
\[\therefore {{\left( \text{-2} \right)}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\left( \text{-10} \right)}^{\text{3}}}\text{ = }\left( \text{-2} \right)\text{ }\!\!\times\!\!\text{ }\left( \text{-2} \right)\text{ }\!\!\times\!\!\text{ }\left( \text{-2} \right)\text{ }\!\!\times\!\!\text{ }\left( \text{-10} \right)\text{ }\!\!\times\!\!\text{ }\left( \text{-10} \right)\text{ }\!\!\times\!\!\text{ }\left( \text{-10} \right)\]
$\Rightarrow {{\left( \text{-2} \right)}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\left( \text{-10} \right)}^{\text{3}}}\text{ = 8000}$
Hence, the value of ${{\left( \text{-2} \right)}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\left( \text{-10} \right)}^{\text{3}}}$ is $\text{8000}$.
8. Compare the following numbers:
i. $\text{2}\text{.7 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{12}}}\text{; 1}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{8}}}$
Ans: We have to compare $\text{2}\text{.7 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{12}}}$ and $\text{1}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{8}}}$.
We will get the solution by simply comparing the exponents of base $\text{10}$.
$\therefore \text{1}{{\text{0}}^{\text{12}}}\text{ 1}{{\text{0}}^{\text{8}}}$
Hence, we can say that $\text{2}\text{.7 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{12}}}\text{ 1}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{8}}}$.
ii. $\text{4 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{14}}}\text{; 3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{17}}}$
Ans: We have to compare $\text{4 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{14}}}$ and $\text{3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{17}}}$.
We will get the solution by simply comparing the exponents of base $\text{10}$.
$\therefore \text{1}{{\text{0}}^{\text{17}}}\text{ 1}{{\text{0}}^{\text{14}}}$
Hence, we can say that $\text{3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{17}}}\text{ 4 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{14}}}$.
Exercise 11.2
1. Using laws of exponents, simplify and write the answer in exponential form:
i. ${{\text{3}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{8}}}$
Ans: We have to simplify ${{\text{3}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{8}}}$.
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m+n}}}$.
$\therefore {{\text{3}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{8}}}\text{ = }{{\text{3}}^{\text{2+4+8}}}$
$\Rightarrow {{\text{3}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{8}}}\text{ = }{{\text{3}}^{\text{14}}}$
Hence, we can write ${{\text{3}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{8}}}$ as ${{\text{3}}^{\text{14}}}$.
ii. ${{\text{6}}^{\text{15}}}\text{ }\!\!\div\!\!\text{ }{{\text{6}}^{\text{10}}}$
Ans: We have to simplify ${{\text{6}}^{\text{15}}}\text{ }\!\!\div\!\!\text{ }{{\text{6}}^{\text{10}}}$.
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\div\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m-n}}}$.
$\therefore {{\text{6}}^{\text{15}}}\text{ }\!\!\div\!\!\text{ }{{\text{6}}^{\text{10}}}\text{ = }{{\text{6}}^{\text{15-10}}}$
$\Rightarrow {{\text{6}}^{\text{15}}}\text{ }\!\!\div\!\!\text{ }{{\text{6}}^{\text{10}}}\text{ = }{{\text{6}}^{\text{5}}}$
Hence, we can write ${{\text{6}}^{\text{15}}}\text{ }\!\!\div\!\!\text{ }{{\text{6}}^{\text{10}}}$ as ${{\text{6}}^{\text{5}}}$.
iii. ${{\text{a}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{2}}}$
Ans: We have to simplify ${{\text{a}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{2}}}$.
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m+n}}}$.
$\therefore {{\text{a}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{2}}}\text{ = }{{\text{a}}^{\text{3+2}}}$
$\Rightarrow {{\text{a}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{2}}}\text{ = }{{\text{a}}^{\text{5}}}$
Hence, we can write ${{\text{a}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{2}}}$ as ${{\text{a}}^{\text{5}}}$.
iv. ${{\text{7}}^{\text{x}}}\text{ }\!\!\times\!\!\text{ }{{\text{7}}^{\text{2}}}$
Ans: We have to simplify ${{\text{7}}^{\text{x}}}\text{ }\!\!\times\!\!\text{ }{{\text{7}}^{\text{2}}}$.
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m+n}}}$.
$\therefore {{\text{7}}^{\text{x}}}\text{ }\!\!\times\!\!\text{ }{{\text{7}}^{\text{2}}}\text{ = }{{\text{7}}^{\text{x+2}}}$
$\Rightarrow {{\text{7}}^{\text{x}}}\text{ }\!\!\times\!\!\text{ }{{\text{7}}^{\text{2}}}\text{ = }{{\text{7}}^{\text{x+2}}}$
Hence, we can write ${{\text{7}}^{\text{x}}}\text{ }\!\!\times\!\!\text{ }{{\text{7}}^{\text{2}}}$ as ${{\text{7}}^{\text{x+2}}}$.
v. ${{\left( {{\text{5}}^{\text{2}}} \right)}^{\text{3}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{3}}}$
Ans: We have to simplify ${{\left( {{\text{5}}^{\text{2}}} \right)}^{\text{3}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{3}}}$.
We know the law of exponents ${{\left( {{\text{a}}^{\text{m}}} \right)}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m }\!\!\times\!\!\text{ n}}}$.
$\therefore {{\left( {{\text{5}}^{\text{2}}} \right)}^{\text{3}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{3}}}\text{ = }{{\text{5}}^{\text{2 }\!\!\times\!\!\text{ 3}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{3}}}\text{ = }{{\text{5}}^{\text{6}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{3}}}$
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\div\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m-n}}}$.
$\therefore {{\text{5}}^{\text{6}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{3}}}\text{ = }{{\text{5}}^{\text{6-3}}}$
$\Rightarrow {{\text{5}}^{\text{6}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{3}}}\text{ = }{{\text{5}}^{\text{3}}}$
Hence, we can write ${{\left( {{\text{5}}^{\text{2}}} \right)}^{\text{3}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{3}}}$ as ${{\text{5}}^{\text{3}}}$.
vi. ${{\text{2}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{5}}}$
Ans: We have to simplify ${{\text{2}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{5}}}$.
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\times\!\!\text{ }{{\text{b}}^{\text{m}}}\text{ = }{{\left( \text{a }\!\!\times\!\!\text{ b} \right)}^{\text{m}}}$.
$\therefore {{\text{2}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{5}}}\text{ = }{{\left( \text{2 }\!\!\times\!\!\text{ 5} \right)}^{\text{5}}}$
$\Rightarrow {{\text{2}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{5}}}\text{ = 1}{{\text{0}}^{\text{5}}}$
Hence, we can write ${{\text{2}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{5}}}$ as $\text{1}{{\text{0}}^{\text{5}}}$.
vii. ${{\text{a}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{b}}^{\text{4}}}$
Ans: We have to simplify ${{\text{a}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{b}}^{\text{4}}}$.
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\times\!\!\text{ }{{\text{b}}^{\text{m}}}\text{ = }{{\left( \text{a }\!\!\times\!\!\text{ b} \right)}^{\text{m}}}$.
$\therefore {{\text{a}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{b}}^{\text{4}}}\text{ = }{{\left( \text{a }\!\!\times\!\!\text{ b} \right)}^{\text{4}}}$
Hence, we can write ${{\text{a}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{b}}^{\text{4}}}$ as ${{\left( \text{a }\!\!\times\!\!\text{ b} \right)}^{\text{4}}}$.
viii. ${{\left( {{\text{3}}^{\text{4}}} \right)}^{\text{3}}}$
Ans: We have to simplify ${{\left( {{\text{3}}^{\text{4}}} \right)}^{\text{3}}}$.
We know the law of exponents ${{\left( {{\text{a}}^{\text{m}}} \right)}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m }\!\!\times\!\!\text{ n}}}$.
$\therefore {{\left( {{\text{3}}^{\text{4}}} \right)}^{\text{3}}}\text{ = }{{\text{3}}^{\text{4 }\!\!\times\!\!\text{ 3}}}\text{ = }{{\text{3}}^{\text{12}}}$
Hence, we can write ${{\left( {{\text{3}}^{\text{4}}} \right)}^{\text{3}}}$ as ${{\text{3}}^{\text{12}}}$.
ix. $\left( {{\text{2}}^{\text{20}}}\text{ }\!\!\div\!\!\text{ }{{\text{2}}^{\text{15}}} \right)\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{3}}}$
Ans: We have to simplify $\left( {{\text{2}}^{\text{20}}}\text{ }\!\!\div\!\!\text{ }{{\text{2}}^{\text{15}}} \right)\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{3}}}$.
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\div\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m-n}}}$.
$\therefore \left( {{\text{2}}^{\text{20}}}\text{ }\!\!\div\!\!\text{ }{{\text{2}}^{\text{15}}} \right)\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{3}}}\text{ = }\left( {{\text{2}}^{\text{20-15}}} \right)\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{3}}}\text{ = }{{\text{2}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{3}}}$
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\times\!\!\text{ }{{\text{b}}^{\text{m}}}\text{ = }{{\left( \text{a }\!\!\times\!\!\text{ b} \right)}^{\text{m}}}$.
$\therefore {{\text{2}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{3}}}\text{ = }{{\text{2}}^{\text{5+3}}}\text{ = }{{\text{2}}^{\text{8}}}$
Hence, we can write $\left( {{\text{2}}^{\text{20}}}\text{ }\!\!\div\!\!\text{ }{{\text{2}}^{\text{15}}} \right)\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{3}}}$ as ${{\text{2}}^{\text{8}}}$.
x. ${{\text{8}}^{\text{t}}}\text{ }\!\!\div\!\!\text{ }{{\text{8}}^{\text{2}}}$
Ans: We have to simplify ${{\text{8}}^{\text{t}}}\text{ }\!\!\div\!\!\text{ }{{\text{8}}^{\text{2}}}$.
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\div\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m-n}}}$.
$\therefore {{\text{8}}^{\text{t}}}\text{ }\!\!\div\!\!\text{ }{{\text{8}}^{\text{2}}}\text{ = }{{\text{8}}^{\text{t-2}}}$
Hence, we can write ${{\text{8}}^{\text{t}}}\text{ }\!\!\div\!\!\text{ }{{\text{8}}^{\text{2}}}$ as ${{\text{8}}^{\text{t-2}}}$.
2. Simplify and express each of the following in exponential form:
i. $\dfrac{{{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ 4}}{\text{3 }\!\!\times\!\!\text{ 32}}$
Ans: We have to simplify $\dfrac{{{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ 4}}{\text{3 }\!\!\times\!\!\text{ 32}}$.
$\therefore \dfrac{{{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ 4}}{\text{3 }\!\!\times\!\!\text{ 32}}\text{ = }\dfrac{{{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{2}}}}{\text{3 }\!\!\times\!\!\text{ }{{\text{2}}^{\text{5}}}}$
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m+n}}}$.
$\Rightarrow \dfrac{{{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{2}}}}{\text{3 }\!\!\times\!\!\text{ }{{\text{2}}^{\text{5}}}}\text{ = }\dfrac{{{\text{2}}^{\text{3+2}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{4}}}}{\text{3 }\!\!\times\!\!\text{ }{{\text{2}}^{\text{5}}}}\text{ = }\dfrac{{{\text{2}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{4}}}}{\text{3 }\!\!\times\!\!\text{ }{{\text{2}}^{\text{5}}}}\text{ = }\dfrac{{{\text{3}}^{\text{4}}}}{\text{3}}$
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\div\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m-n}}}$.
$\Rightarrow \dfrac{{{\text{3}}^{\text{4}}}}{\text{3}}\text{ = }{{\text{3}}^{\text{4-1}}}\text{ = }{{\text{3}}^{\text{3}}}$
Hence, we can write $\dfrac{{{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ 4}}{\text{3 }\!\!\times\!\!\text{ 32}}$ as ${{\text{3}}^{\text{3}}}$.
ii. $\left[ {{\left( {{\text{5}}^{\text{2}}} \right)}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{4}}} \right]\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{7}}}$
Ans: We have to simplify $\left[ {{\left( {{\text{5}}^{\text{2}}} \right)}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{4}}} \right]\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{7}}}$.
We know the law of exponents ${{\left( {{\text{a}}^{\text{m}}} \right)}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m }\!\!\times\!\!\text{ n}}}$.
$\therefore \left[ {{\left( {{\text{5}}^{\text{2}}} \right)}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{4}}} \right]\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{7}}}\text{ = }\left[ {{\text{5}}^{\text{2 }\!\!\times\!\!\text{ 3}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{4}}} \right]\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{7}}}\text{ = }\left[ {{\text{5}}^{\text{6}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{4}}} \right]\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{7}}}$
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m+n}}}$.
$\Rightarrow \left[ {{\text{5}}^{\text{6}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{4}}} \right]\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{7}}}\text{ = }{{\text{5}}^{\text{6+4}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{7}}}\text{ = }{{\text{5}}^{\text{10}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{7}}}$
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\div\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m-n}}}$.
$\Rightarrow {{\text{5}}^{\text{10}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{7}}}\text{ = }{{\text{5}}^{\text{10-7}}}\text{ = }{{\text{5}}^{\text{3}}}$
Hence, we can write $\left[ {{\left( {{\text{5}}^{\text{2}}} \right)}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{4}}} \right]\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{7}}}$ as ${{\text{5}}^{\text{3}}}$.
iii. $\text{2}{{\text{5}}^{\text{4}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{3}}}$
Ans: We have to simplify $\text{2}{{\text{5}}^{\text{4}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{3}}}$.
$\therefore \text{2}{{\text{5}}^{\text{4}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{3}}}\text{ = }{{\left( {{\text{5}}^{\text{2}}} \right)}^{\text{4}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{3}}}$
We know the law of exponents ${{\left( {{\text{a}}^{\text{m}}} \right)}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m }\!\!\times\!\!\text{ n}}}$.
$\Rightarrow {{\left( {{\text{5}}^{\text{2}}} \right)}^{\text{4}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{3}}}\text{ = }{{\text{5}}^{\text{2 }\!\!\times\!\!\text{ 4}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{3}}}\text{ = }{{\text{5}}^{\text{8}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{3}}}$
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\div\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m-n}}}$.
$\Rightarrow {{\text{5}}^{\text{8}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{3}}}\text{ = }{{\text{5}}^{\text{8-3}}}\text{ = }{{\text{5}}^{\text{5}}}$
Hence, we can write $\text{2}{{\text{5}}^{\text{4}}}\text{ }\!\!\div\!\!\text{ }{{\text{5}}^{\text{3}}}$ as ${{\text{5}}^{\text{5}}}$.
iv. $\dfrac{\text{3 }\!\!\times\!\!\text{ }{{\text{7}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ 1}{{\text{1}}^{\text{8}}}}{\text{21 }\!\!\times\!\!\text{ 1}{{\text{1}}^{\text{3}}}}$
Ans: We have to simplify $\dfrac{\text{3 }\!\!\times\!\!\text{ }{{\text{7}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ 1}{{\text{1}}^{\text{8}}}}{\text{21 }\!\!\times\!\!\text{ 1}{{\text{1}}^{\text{3}}}}$.
$\therefore \dfrac{\text{3 }\!\!\times\!\!\text{ }{{\text{7}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ 1}{{\text{1}}^{\text{8}}}}{\text{21 }\!\!\times\!\!\text{ 1}{{\text{1}}^{\text{3}}}}\text{ = }\dfrac{\text{3 }\!\!\times\!\!\text{ }{{\text{7}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ 1}{{\text{1}}^{\text{8}}}}{\text{3 }\!\!\times\!\!\text{ 7 }\!\!\times\!\!\text{ 1}{{\text{1}}^{\text{3}}}}\text{ = }\dfrac{\text{3}}{\text{3}}\text{ }\!\!\times\!\!\text{ }\dfrac{{{\text{7}}^{\text{2}}}}{\text{7}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}{{\text{1}}^{\text{8}}}}{\text{1}{{\text{1}}^{\text{3}}}}$
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\div\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m-n}}}$.
$\Rightarrow \dfrac{\text{3}}{\text{3}}\text{ }\!\!\times\!\!\text{ }\dfrac{{{\text{7}}^{\text{2}}}}{\text{7}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}{{\text{1}}^{\text{8}}}}{\text{1}{{\text{1}}^{\text{3}}}}\text{ = }{{\text{3}}^{\text{1-1}}}\text{ }\!\!\times\!\!\text{ }{{\text{7}}^{\text{2-1}}}\text{ }\!\!\times\!\!\text{ 1}{{\text{1}}^{\text{8-3}}}\text{ = 7 }\!\!\times\!\!\text{ 1}{{\text{1}}^{\text{5}}}$
Hence, we can write $\dfrac{\text{3 }\!\!\times\!\!\text{ }{{\text{7}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ 1}{{\text{1}}^{\text{8}}}}{\text{21 }\!\!\times\!\!\text{ 1}{{\text{1}}^{\text{3}}}}$ as $\text{7 }\!\!\times\!\!\text{ 1}{{\text{1}}^{\text{5}}}$.
v. $\dfrac{{{\text{3}}^{\text{7}}}}{{{\text{3}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{3}}}}$
Ans: We have to simplify $\dfrac{{{\text{3}}^{\text{7}}}}{{{\text{3}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{3}}}}$.
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m+n}}}$.
$\Rightarrow \dfrac{{{\text{3}}^{\text{7}}}}{{{\text{3}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{3}}}}\text{ = }\dfrac{{{\text{3}}^{\text{7}}}}{{{\text{3}}^{\text{4+3}}}}\text{ = }\dfrac{{{\text{3}}^{\text{7}}}}{{{\text{3}}^{\text{7}}}}$
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\div\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m-n}}}$.
$\Rightarrow \dfrac{{{\text{3}}^{\text{7}}}}{{{\text{3}}^{\text{7}}}}\text{ = }{{\text{3}}^{\text{7-7}}}\text{ = }{{\text{3}}^{\text{0}}}\text{ = 1}$
Hence, we can write $\dfrac{{{\text{3}}^{\text{7}}}}{{{\text{3}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{3}}}}$ as $\text{1}$.
vi. ${{\text{2}}^{\text{0}}}\text{+}{{\text{3}}^{\text{0}}}\text{+}{{\text{4}}^{ \text{0}}}$
Ans: We have to simplify ${{\text{2}}^{\text{0}}}\text{+}{{\text{3}}^{\text{0}}}\text{+}{{\text{4}}^{\text{0}}}$.
We know the value of ${{\text{a}}^{\text{0}}}\text{=1}$.
$\therefore {{\text{2}}^{\text{0}}}\text{+}{{\text{3}}^{\text{0}}}\text{+}{{\text{4}}^{\text{0}}}\text{ = 1+1+1 = 3}$
Hence, we can write ${{\text{2}}^{\text{0}}}\text{+}{{\text{3}}^{\text{0}}}\text{+}{{\text{4}}^{\text{0}}}$ as $\text{3}$.
vii. ${{\text{2}}^{\text{0}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{0}}}\text{ }\!\!\times\!\!\text{ }{{\text{4}}^{\text{0}}}$
Ans: We have to simplify ${{\text{2}}^{\text{0}}}\times {{\text{3}}^{\text{0}}}\times {{\text{4}}^{\text{0}}}$.
We know the value of ${{\text{a}}^{\text{0}}}\text{=1}$.
$\therefore {{\text{2}}^{\text{0}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{0}}}\text{ }\!\!\times\!\!\text{ }{{\text{4}}^{\text{0}}}\text{ = 1 }\!\!\times\!\!\text{ 1 }\!\!\times\!\!\text{ 1 = 1}$
Hence, we can write ${{\text{2}}^{\text{0}}}\times {{\text{3}}^{\text{0}}}\times {{\text{4}}^{\text{0}}}$ as $\text{1}$.
viii. $\left( {{\text{3}}^{\text{0}}}\text{+}{{\text{2}}^{\text{0}}} \right)\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{0}}}$
Ans: We have to simplify $\left( {{\text{3}}^{\text{0}}}\text{+}{{\text{2}}^{\text{0}}} \right)\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{0}}}$.
We know the value of ${{\text{a}}^{\text{0}}}\text{=1}$.
$\therefore \left( {{\text{3}}^{\text{0}}}\text{+}{{\text{2}}^{\text{0}}} \right)\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{0}}}\text{ = }\left( \text{1+1} \right)\text{ }\!\!\times\!\!\text{ 1 = 2 }\!\!\times\!\!\text{ 1 = 2}$
Hence, we can write $\left( {{\text{3}}^{\text{0}}}\text{+}{{\text{2}}^{\text{0}}} \right)\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{0}}}$ as $\text{2}$.
ix. $\dfrac{{{\text{2}}^{\text{8}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{5}}}}{{{\text{4}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{3}}}}$
Ans: We have to simplify $\dfrac{{{\text{2}}^{\text{8}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{5}}}}{{{\text{4}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{3}}}}$.
$\therefore \dfrac{{{\text{2}}^{\text{8}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{5}}}}{{{\text{4}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{3}}}}\text{ = }\dfrac{{{\text{2}}^{\text{8}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{5}}}}{{{\left( {{\text{2}}^{\text{2}}} \right)}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{3}}}}$
We know the law of exponents ${{\left( {{\text{a}}^{\text{m}}} \right)}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m }\!\!\times\!\!\text{ n}}}$.
$\Rightarrow \dfrac{{{\text{2}}^{\text{8}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{5}}}}{{{\left( {{\text{2}}^{\text{2}}} \right)}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{3}}}}\text{ = }\dfrac{{{\text{2}}^{\text{8}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{5}}}}{{{\text{2}}^{\text{2 }\!\!\times\!\!\text{ 3}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{3}}}}\text{ = }\dfrac{{{\text{2}}^{\text{8}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{5}}}}{{{\text{2}}^{\text{6}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{3}}}}\text{ = }\dfrac{{{\text{2}}^{\text{8}}}}{{{\text{2}}^{\text{6}}}}\text{ }\!\!\times\!\!\text{ }\dfrac{{{\text{a}}^{\text{5}}}}{{{\text{a}}^{\text{3}}}}$
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\div\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m-n}}}$.
$\Rightarrow \dfrac{{{\text{2}}^{\text{8}}}}{{{\text{2}}^{\text{6}}}}\text{ }\!\!\times\!\!\text{ }\dfrac{{{\text{a}}^{\text{5}}}}{{{\text{a}}^{\text{3}}}}\text{ = }{{\text{2}}^{\text{8-6}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{5-3}}}\text{ = }{{\text{2}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{2}}}$
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\times\!\!\text{ }{{\text{b}}^{\text{m}}}\text{ = }{{\left( \text{ab} \right)}^{\text{m}}}$.
$\Rightarrow {{\text{2}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{2}}}\text{ = }{{\left( \text{2a} \right)}^{\text{2}}}$
Hence, we can write $\dfrac{{{\text{2}}^{\text{8}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{5}}}}{{{\text{4}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{3}}}}$ as ${{\left( \text{2a} \right)}^{\text{2}}}$.
x. $\left( \dfrac{{{\text{a}}^{\text{5}}}}{{{\text{a}}^{\text{3}}}} \right)\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{8}}}$
Ans: We have to simplify $\left( \dfrac{{{\text{a}}^{\text{5}}}}{{{\text{a}}^{\text{3}}}} \right)\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{8}}}$.
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\div\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m-n}}}$.
$\Rightarrow \left( \dfrac{{{\text{a}}^{\text{5}}}}{{{\text{a}}^{\text{3}}}} \right)\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{8}}}\text{ = }{{\text{a}}^{\text{5-3}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{8}}}\text{ = }{{\text{a}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{8}}}$
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m+n}}}$.
$\Rightarrow {{\text{a}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{8}}}\text{ = }{{\text{a}}^{\text{2+8}}}\text{ = }{{\text{a}}^{\text{10}}}$
Hence, we can write $\left( \dfrac{{{\text{a}}^{\text{5}}}}{{{\text{a}}^{\text{3}}}} \right)\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{8}}}$ as ${{\text{a}}^{\text{10}}}$.
xi. $\dfrac{{{\text{4}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{8}}}{{\text{b}}^{\text{3}}}}{{{\text{4}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{5}}}{{\text{b}}^{\text{2}}}}$
Ans: We have to simplify $\dfrac{{{\text{4}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{8}}}{{\text{b}}^{\text{3}}}}{{{\text{4}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{5}}}{{\text{b}}^{\text{2}}}}$.
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\div\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m-n}}}$.
$\Rightarrow \dfrac{{{\text{4}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{8}}}{{\text{b}}^{\text{3}}}}{{{\text{4}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{5}}}{{\text{b}}^{\text{2}}}}\text{ = }{{\text{4}}^{\text{5-5}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{8-5}}}\text{ }\!\!\times\!\!\text{ }{{\text{b}}^{\text{3-2}}}\text{ = }{{\text{4}}^{\text{0}}}{{\text{a}}^{\text{3}}}{{\text{b}}^{\text{1}}}\text{ = }{{\text{a}}^{\text{3}}}\text{b}$
Hence, we can write $\dfrac{{{\text{4}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{8}}}{{\text{b}}^{\text{3}}}}{{{\text{4}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{5}}}{{\text{b}}^{\text{2}}}}$ as ${{\text{a}}^{\text{3}}}\text{b}$.
xii. ${{\left( {{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 2} \right)}^{\text{2}}}$
Ans: We have to simplify ${{\left( {{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 2} \right)}^{\text{2}}}$.
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m+n}}}$.
$\Rightarrow {{\left( {{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 2} \right)}^{\text{2}}}\text{ = }{{\left( {{\text{2}}^{\text{3+1}}} \right)}^{\text{2}}}\text{ = }{{\left( {{\text{2}}^{\text{4}}} \right)}^{\text{2}}}$
We know the law of exponents ${{\left( {{\text{a}}^{\text{m}}} \right)}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m }\!\!\times\!\!\text{ n}}}$.
$\Rightarrow {{\left( {{\text{2}}^{\text{4}}} \right)}^{\text{2}}}\text{ = }{{\text{2}}^{\text{4 }\!\!\times\!\!\text{ 2}}}\text{ = }{{\text{2}}^{\text{8}}}$
Hence, we can write ${{\left( {{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 2} \right)}^{\text{2}}}$ as ${{\text{2}}^{\text{8}}}$.
3. Say true or false and justify your answer:
i. $\text{10 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{11}}}\text{ = 10}{{\text{0}}^{\text{11}}}$
Ans: The given statement is false.
Explanation:
LHS: It is given $\text{10 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{11}}}$.
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m+n}}}$.
$\therefore \text{10 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{11}}}\text{ = 1}{{\text{0}}^{\text{1+11}}}\text{ = 1}{{\text{0}}^{\text{12}}}$
RHS: It is given $\text{10}{{\text{0}}^{\text{11}}}$.
We have obtained that $\text{LHS }\ne \text{ RHS}$
Hence, the statement is false.
ii. ${{\text{2}}^{\text{3}}}\text{ }{{\text{5}}^{\text{2}}}$
Ans: The given statement is false.
Explanation:
LHS: It is given ${{\text{2}}^{\text{3}}}$.
$\therefore {{\text{2}}^{\text{3}}}\text{ = 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 = 8}$
RHS: It is given ${{\text{5}}^{\text{2}}}$.
$\therefore {{\text{5}}^{\text{2}}}\text{ = 5 }\!\!\times\!\!\text{ 5 = 25}$
We have obtained that $\text{LHS < RHS}$
Hence, the statement is false.
iii. ${{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{2}}}\text{ = }{{\text{6}}^{\text{5}}}$
Ans: The given statement is false.
Explanation:
LHS: It is given ${{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{2}}}$.
$\therefore {{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{2}}}\text{ = 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 = 72}$
RHS: It is given ${{\text{6}}^{\text{5}}}$.
$\therefore {{\text{6}}^{\text{5}}}\text{ = 6 }\!\!\times\!\!\text{ 6 }\!\!\times\!\!\text{ 6 }\!\!\times\!\!\text{ 6 }\!\!\times\!\!\text{ 6 = 7776}$
We have obtained that $\text{LHS }\ne \text{ RHS}$
Hence, the statement is false.
iv. ${{\text{3}}^{\text{0}}}\text{ = }{{\left( \text{1000} \right)}^{\text{0}}}$
Ans: The given statement is true.
Explanation:
LHS: It is given ${{\text{3}}^{\text{0}}}$.
$\therefore {{\text{3}}^{\text{0}}}\text{ = 1}$
RHS: It is given $\text{100}{{\text{0}}^{\text{0}}}$.
$\therefore \text{100}{{\text{0}}^{\text{0}}}\text{ = 1}$
We have obtained that $\text{LHS = RHS}$
Hence, the statement is true.
4. Express each of the following as a product of prime factors only in exponential form:
i. $\text{108 }\!\!\times\!\!\text{ 192}$
Ans: We have to express $\text{108 }\!\!\times\!\!\text{ 192}$ in exponential form.
$\text{108 = 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 = }{{\text{2}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{3}}}$
$\text{192 = 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 3 = }{{\text{2}}^{\text{6}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{1}}}$
$\therefore \text{108 }\!\!\times\!\!\text{ 192 = }\left( {{\text{2}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{3}}} \right)\text{ }\!\!\times\!\!\text{ }\left( {{\text{2}}^{\text{6}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{1}}} \right)$
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m+n}}}$.
$\therefore \text{108 }\!\!\times\!\!\text{ 192 = }{{\text{2}}^{\text{2+6}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{3+1}}}$
$\Rightarrow \text{108 }\!\!\times\!\!\text{ 192 = }{{\text{2}}^{\text{8}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{4}}}$
Hence, we can write $\text{108 }\!\!\times\!\!\text{ 192}$ as ${{\text{2}}^{\text{8}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{4}}}$.
ii. $\text{270}$
Ans: We have to express $\text{270}$ in exponential form.
$\text{270 = 2 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 5 = }{{\text{2}}^{\text{1}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 5 = 2 }\!\!\times\!\!\text{ }{{\text{3}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 5}$
Hence, we can write $\text{270}$ as $\text{2 }\!\!\times\!\!\text{ }{{\text{3}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 5}$.
iii. $\text{729 }\!\!\times\!\!\text{ 64}$
Ans: We have to express $\text{729 }\!\!\times\!\!\text{ 64}$ in exponential form.
$\text{729 = 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 }\!\!\times\!\!\text{ 3 = }{{\text{3}}^{\text{6}}}$
$\text{64 = 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 = }{{\text{2}}^{\text{6}}}$
$\therefore \text{729 }\!\!\times\!\!\text{ 64 = }{{\text{3}}^{\text{6}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{6}}}$
Hence, we can write $\text{729 }\!\!\times\!\!\text{ 64}$ as ${{\text{3}}^{\text{6}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{6}}}$.
iv. $\text{768}$
Ans: We have to express $\text{768}$ in exponential form.
$\text{270 = 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 3 = }{{\text{2}}^{\text{8}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{1}}}\text{ = }{{\text{2}}^{\text{8}}}\text{ }\!\!\times\!\!\text{ 3}$
Hence, we can write $\text{768}$ as ${{\text{2}}^{\text{8}}}\text{ }\!\!\times\!\!\text{ 3}$.
5. Simplify:
i. $\dfrac{{{\left( {{\text{2}}^{\text{5}}} \right)}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{7}}^{\text{3}}}}{{{\text{8}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 7}}$
Ans: We have to simplify $\dfrac{{{\left( {{\text{2}}^{\text{5}}} \right)}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{7}}^{\text{3}}}}{{{\text{8}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 7}}$
$\dfrac{{{\left( {{\text{2}}^{\text{5}}} \right)}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{7}}^{\text{3}}}}{{{\text{8}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 7}}\text{ = }\dfrac{{{\left( {{\text{2}}^{\text{5}}} \right)}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{7}}^{\text{3}}}}{{{\left( {{\text{2}}^{\text{3}}} \right)}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 7}}$
We know the law of exponents ${{\left( {{\text{a}}^{\text{m}}} \right)}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m }\!\!\times\!\!\text{ n}}}$.
$\dfrac{{{\left( {{\text{2}}^{\text{5}}} \right)}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{7}}^{\text{3}}}}{{{\left( {{\text{2}}^{\text{3}}} \right)}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 7}}\text{ = }\dfrac{{{\text{2}}^{\text{5 }\!\!\times\!\!\text{ 2}}}\text{ }\!\!\times\!\!\text{ }{{\text{7}}^{\text{3}}}}{{{\text{2}}^{\text{3 }\!\!\times\!\!\text{ 3}}}\text{ }\!\!\times\!\!\text{ 7}}\text{ = }\dfrac{{{\text{2}}^{\text{10}}}\text{ }\!\!\times\!\!\text{ }{{\text{7}}^{\text{3}}}}{{{\text{2}}^{\text{9}}}\text{ }\!\!\times\!\!\text{ 7}}$
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\div\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m-n}}}$.
$\dfrac{{{\text{2}}^{\text{10}}}\text{ }\!\!\times\!\!\text{ }{{\text{7}}^{\text{3}}}}{{{\text{2}}^{\text{9}}}\text{ }\!\!\times\!\!\text{ 7}}\text{ = }{{\text{2}}^{\text{10-9}}}\text{ }\!\!\times\!\!\text{ }{{\text{7}}^{\text{3-1}}}\text{ = }{{\text{2}}^{\text{1}}}\text{ }\!\!\times\!\!\text{ }{{\text{7}}^{\text{2}}}\text{ =98}$
Therefore, the value of $\dfrac{{{\left( {{\text{2}}^{\text{5}}} \right)}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{7}}^{\text{3}}}}{{{\text{8}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ 7}}$ is $\text{98}$.
ii. $\dfrac{\text{25 }\!\!\times\!\!\text{ }{{\text{5}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{8}}}}{\text{1}{{\text{0}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{4}}}}$
Ans: We have to simplify $\dfrac{\text{25 }\!\!\times\!\!\text{ }{{\text{5}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{8}}}}{\text{1}{{\text{0}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{4}}}}$.
$\dfrac{\text{25 }\!\!\times\!\!\text{ }{{\text{5}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{8}}}}{\text{1}{{\text{0}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{4}}}}=\dfrac{{{\text{5}}^{2}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{8}}}}{{{\left( 5\times 2 \right)}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{4}}}}$
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\times\!\!\text{ }{{\text{b}}^{\text{m}}}\text{ = }{{\left( \text{a }\!\!\times\!\!\text{ b} \right)}^{\text{m}}}$.
\[\Rightarrow \dfrac{{{\text{5}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{8}}}}{{{\left( \text{5 }\!\!\times\!\!\text{ 2} \right)}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{4}}}}\text{=}\dfrac{{{\text{5}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{8}}}}{{{\text{5}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{4}}}}\]
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m+n}}}$.
\[\Rightarrow \dfrac{{{\text{5}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{8}}}}{{{\text{5}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{4}}}}\text{ = }\dfrac{{{\text{5}}^{\text{2+2}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{8}}}}{{{\text{5}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{4}}}}\text{=}\dfrac{{{\text{5}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{8}}}}{{{\text{5}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{4}}}}\]
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\div\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m-n}}}$.
\[\Rightarrow \dfrac{{{\text{5}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{8}}}}{{{\text{5}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{4}}}}\text{ = }\dfrac{{{\text{5}}^{\text{4-3}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{8-4}}}}{{{\text{2}}^{\text{3}}}}\text{ = }\dfrac{{{\text{5}}^{\text{1}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{4}}}}{{{\text{2}}^{\text{3}}}}\text{ = }\dfrac{\text{5}{{\text{t}}^{\text{4}}}}{\text{8}}\]
Therefore, the value of $\dfrac{\text{25 }\!\!\times\!\!\text{ }{{\text{5}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{8}}}}{\text{1}{{\text{0}}^{\text{3}}}\text{ }\!\!\times\!\!\text{ }{{\text{t}}^{\text{4}}}}$ is $\dfrac{\text{5}{{\text{t}}^{\text{4}}}}{\text{8}}$.
iii. $\dfrac{{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ 25}}{{{\text{5}}^{\text{7}}}\text{ }\!\!\times\!\!\text{ }{{\text{6}}^{\text{5}}}}$
Ans: We have to simplify $\dfrac{{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ 25}}{{{\text{5}}^{\text{7}}}\text{ }\!\!\times\!\!\text{ }{{\text{6}}^{\text{5}}}}$.
$\therefore \dfrac{{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ 25}}{{{\text{5}}^{\text{7}}}\text{ }\!\!\times\!\!\text{ }{{\text{6}}^{\text{5}}}}\text{ = }\dfrac{{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\left( \text{5 }\!\!\times\!\!\text{ 2} \right)}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{2}}}}{{{\text{5}}^{\text{7}}}\text{ }\!\!\times\!\!\text{ }{{\left( \text{3 }\!\!\times\!\!\text{ 2} \right)}^{\text{5}}}}$
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\times\!\!\text{ }{{\text{b}}^{\text{m}}}\text{ = }{{\left( \text{a }\!\!\times\!\!\text{ b} \right)}^{\text{m}}}$.
$\Rightarrow \dfrac{{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\left( \text{5 }\!\!\times\!\!\text{ 2} \right)}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{2}}}}{{{\text{5}}^{\text{7}}}\text{ }\!\!\times\!\!\text{ }{{\left( \text{3 }\!\!\times\!\!\text{ 2} \right)}^{\text{5}}}}\text{ = }\dfrac{{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{2}}}}{{{\text{5}}^{\text{7}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{5}}}}$
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\times\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m+n}}}$.
$\Rightarrow \dfrac{{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{2}}}}{{{\text{5}}^{\text{7}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{5}}}}\text{ = }\dfrac{{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{5+2}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{5}}}}{{{\text{5}}^{\text{7}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{5}}}}\text{ = }\dfrac{{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{7}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{5}}}}{{{\text{5}}^{\text{7}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{5}}}}$
We know the law of exponents ${{\text{a}}^{\text{m}}}\text{ }\!\!\div\!\!\text{ }{{\text{a}}^{\text{n}}}\text{ = }{{\text{a}}^{\text{m-n}}}$.
$\Rightarrow \dfrac{{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{7}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{5}}}}{{{\text{5}}^{\text{7}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{5}}}}\text{ = }{{\text{3}}^{\text{5-5}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{7-7}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{5-5}}}$
$\Rightarrow \dfrac{{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{7}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{5}}}}{{{\text{5}}^{\text{7}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{5}}}}\text{ = }{{\text{3}}^{\text{0}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{0}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{0}}}$
$\Rightarrow \dfrac{{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{5}}^{\text{7}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{5}}}}{{{\text{5}}^{\text{7}}}\text{ }\!\!\times\!\!\text{ }{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ }{{\text{2}}^{\text{5}}}}\text{ = 1 }\!\!\times\!\!\text{ 1 }\!\!\times\!\!\text{ 1 = 1}$
Therefore, the value of $\dfrac{{{\text{3}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{ }\!\!\times\!\!\text{ 25}}{{{\text{5}}^{\text{7}}}\text{ }\!\!\times\!\!\text{ }{{\text{6}}^{\text{5}}}}$ is $\text{1}$.
.
Exercise 11.3
1. Write the following numbers in the expanded form:
a. $\text{279404}$
Ans: We have to expand $\text{279404}$.
$\text{279404 = 200000+70000+9000+400+4}$
$\Rightarrow \text{279404 = 2 }\!\!\times\!\!\text{ 100000+7 }\!\!\times\!\!\text{ 10000 + 9 }\!\!\times\!\!\text{ 1000 + 4 }\!\!\times\!\!\text{ 100 + 4 }\!\!\times\!\!\text{ 1}$
$\Rightarrow \text{279404 = 2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{+7 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ + 9 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{ + 4 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}\text{ + 4 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{0}}}$
Hence, the expanded form of $\text{279404}$ is $\text{2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{+7 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ + 9 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{ + 4 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}\text{ + 4 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{0}}}$.
b. $\text{3006194}$
Ans: We have to expand $\text{3006194}$.
$\text{3006194 = 3000000 + 6000 + 100 + 90 + 4}$
$\Rightarrow \text{3006194 = 3 }\!\!\times\!\!\text{ 1000000 + 6 }\!\!\times\!\!\text{ 1000 + 1 }\!\!\times\!\!\text{ 100 + 9 }\!\!\times\!\!\text{ 10 + 4 }\!\!\times\!\!\text{ 1}$
$\Rightarrow \text{3006194 = 3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{6}}}\text{ + 6 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{ + 1 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}\text{+ 9 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{1}}}\text{ + 4 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{0}}}$
Hence, the expanded form of $\text{3006194}$ is $\text{3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{6}}}\text{ + 6 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{ + 1 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}\text{+ 9 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{1}}}\text{ + 4 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{0}}}$.
c. $\text{2806196}$
Ans: We have to expand $\text{2806196}$.
$\text{2806196 = 2000000 + 800000 + 6000 + 100 + 90 + 6}$
$\Rightarrow \text{2806196 = 2 }\!\!\times\!\!\text{ 1000000 + 8 }\!\!\times\!\!\text{ 100000 + 6 }\!\!\times\!\!\text{ 1000 + 1 }\!\!\times\!\!\text{ 100 + 9 }\!\!\times\!\!\text{ 10 + 6 }\!\!\times\!\!\text{ 1}$
$\Rightarrow \text{2806196 = 2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{6}}}\text{ + 8 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{+ 6 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{ + 1 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}\text{+ 9 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{1}}}\text{ + 6 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{0}}}$
Hence, the expanded form of $\text{2806196}$ is $\text{2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{6}}}\text{ + 8 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{+ 6 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{ + 1 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}\text{+ 9 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{1}}}\text{ + 6 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{0}}}$.
d. $\text{120719}$
Ans: We have to expand $\text{120719}$.
$\text{120719 = 100000 + 20000 + 700 +10 + 9}$
$\Rightarrow \text{120719 = 1 }\!\!\times\!\!\text{ 100000 + 2 }\!\!\times\!\!\text{ 10000 + 7 }\!\!\times\!\!\text{ 100 +1 }\!\!\times\!\!\text{ 10 + 9 }\!\!\times\!\!\text{ 1}$
$\Rightarrow \text{120717 = 1 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{ + 2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ + 7 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}\text{ +1 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{1}}}\text{ + 7 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{0}}}$
Hence, the expanded form of $\text{120719}$ is $\text{1 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{ + 2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ + 7 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}\text{ +1 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{1}}}\text{ + 7 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{0}}}$.
e. $\text{20068}$
Ans: We have to expand $\text{20068}$.
$\text{20068 = 20000 +60 + 8}$
$\Rightarrow \text{20068 = 2 }\!\!\times\!\!\text{ 10000 +6 }\!\!\times\!\!\text{ 10 + 8 }\!\!\times\!\!\text{ 1}$
$\Rightarrow \text{20068 = 2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ +6 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{1}}}\text{ + 8 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{0}}}$
Hence, the expanded form of $\text{20068}$ is $\text{2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ +6 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{1}}}\text{ + 8 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{0}}}$.
2. Find the number from each of the following expanded form:
a. $\text{8 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ + 6 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{ + 0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}\text{ + 4 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{1}}}\text{ + 5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{0}}}$
Ans: We are given $\text{8 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ + 6 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{ + 0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}\text{ + 4 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{1}}}\text{ + 5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{0}}}$
We will now simplify it.
$\text{= 8 }\!\!\times\!\!\text{ 10000 + 6 }\!\!\times\!\!\text{ 1000 + 0 }\!\!\times\!\!\text{ 100 + 4 }\!\!\times\!\!\text{ 10 + 5 }\!\!\times\!\!\text{ 1}$
$\text{= 80000 + 6000 + 0 + 40 + 5}$
$\text{= 86045}$
Hence, the required number is $\text{86045}$.
b. $\text{4 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{ + 5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{ + 3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}\text{ + 2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{0}}}$
Ans: We are given $\text{4 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{ + 5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}\text{ + 3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}\text{ + 2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{0}}}$
We will now simplify it.
$\text{= 4 }\!\!\times\!\!\text{ 100000 + 5 }\!\!\times\!\!\text{ 1000 + 3 }\!\!\times\!\!\text{ 100 + 0 }\!\!\times\!\!\text{ 10 + 2 }\!\!\times\!\!\text{ 1}$
$\text{= 400000 + 5000 + 300 + 0 + 2}$
$\text{= 405302}$
Hence, the required number is $\text{405302}$.
c. $\text{3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ + 7 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}\text{ + 5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{0}}}$
Ans: We are given $\text{3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ + 7 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}\text{ + 5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{0}}}$
We will now simplify it.
$\text{= 3 }\!\!\times\!\!\text{ 10000 + 7 }\!\!\times\!\!\text{ 100 + 5 }\!\!\times\!\!\text{ 1}$
$\text{= 30000 + 700 + 5}$
$\text{= 30705}$
Hence, the required number is $\text{30705}$.
d. $\text{9 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{ + 2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}\text{ + 3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{1}}}$
Ans: We are given $\text{9 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{ + 2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{2}}}\text{ + 3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{1}}}$
We will now simplify it.
$\text{= 9 }\!\!\times\!\!\text{ 100000 + 2 }\!\!\times\!\!\text{ 100 + 3 }\!\!\times\!\!\text{ 10}$
$\text{= 900000 + 200 + 30}$
$\text{= 900230}$
Hence, the required number is $\text{900230}$.
3. Express the following numbers in standard form:
i. $\text{5,00,00,000}$
Ans: We have to write the given number in standard form.
$\text{5,00,00,000 = 5 }\!\!\times\!\!\text{ 1,00,00,000 = 5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{7}}}$
Hence, the standard form is $\text{5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{7}}}$.
ii. $\text{70,00,000}$
Ans: We have to write the given number in standard form.
$\text{70,00,000 = 7 }\!\!\times\!\!\text{ 10,00,000 = 7 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{6}}}$
Hence, the standard form is $\text{7 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{6}}}$.
iii. $\text{3,18,65,00,000}$
Ans: We have to write the given number in standard form.
$\text{3,18,65,00,000 = 31865 }\!\!\times\!\!\text{ 1,00,000 = 3}\text{.1865 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{ = 3}\text{.1865 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{9}}}$
Hence, the standard form is $\text{3}\text{.1865 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{9}}}$.
iv. $\text{3,90,878}$
Ans: We have to write the given number in standard form.
$\text{3,90,878 = 3}\text{.90878 }\!\!\times\!\!\text{ 1,00,000 = 3}\text{.90878 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}$
Hence, the standard form is $\text{3}\text{.90878 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}$.
v. $\text{39087}\text{.8}$
Ans: We have to write the given number in standard form.
$\text{39087}\text{.8 = 3}\text{.90878 }\!\!\times\!\!\text{ 10,000 = 3}\text{.90878 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}$
Hence, the standard form is $\text{3}\text{.90878 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{4}}}$.
vi. $\text{3908}\text{.78}$
Ans: We have to write the given number in standard form.
$\text{3908}\text{.78 = 3}\text{.90878 }\!\!\times\!\!\text{ 1,000 = 3}\text{.90878 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}$
Hence, the standard form is $\text{3}\text{.90878 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{3}}}$.
4. Express the number appearing in the following statements in standard form:
a. The distance between Earth and Moon is $\text{384,000,000 m}$.
Ans: We have to write $\text{384,000,000}$in standard form.
$\text{384,000,000 = 3}\text{.84 }\!\!\times\!\!\text{ 100,000,000 = 3}\text{.84 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{8}}}$
Hence, the required standard form is $\text{3}\text{.84 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{8}}}\text{ m}$.
b. Speed of light in vacuum is $\text{300,000,000 m/s}$.
Ans: We have to write $\text{300,000,000}$in standard form.
$\text{300,000,000 = 3 }\!\!\times\!\!\text{ 100,000,000 = 3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{8}}}$
Hence, the required standard form is $\text{3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{8}}}\text{ m/s}$.
c. Diameter of Earth is $\text{1,27,56,000 m}$.
Ans: We have to write $\text{1,27,56,000}$in standard form.
$\text{1,27,56,000 = 1}\text{.2756 }\!\!\times\!\!\text{ 1,00,00,000 = 1}\text{.2756 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{7}}}$
Hence, the required standard form is $\text{1}\text{.2756 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{7}}}\text{ m}$.
d. Diameter of Sun is $\text{1,400,000,000 m}$.
Ans: We have to write $\text{1,400,000,000}$ in standard form.
$\text{1,400,000,000 = 1}\text{.4 }\!\!\times\!\!\text{ 1,000,000,000 = 1}\text{.4 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{9}}}$
Hence, the required standard form is $\text{1}\text{.4 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{9}}}\text{ m}$.
e. In a galaxy there are on average $\text{100,000,000,000}$ stars.
Ans: We have to write $\text{100,000,000,000}$ in standard form.
$\text{100,000,000,000 = 1 }\!\!\times\!\!\text{ 100,000,000,000 = 1 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{11}}}$
Hence, the required standard form is $\text{1 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{11}}}$ stars.
f. The universe is estimated to be about $\text{12,000,000,000}$ years old.
Ans: We have to write $\text{12,000,000,000}$ in standard form.
$\text{12,000,000,000 = 1}\text{.2 }\!\!\times\!\!\text{ 10,000,000,000 = 1}\text{.2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{10}}}$
Hence, the required standard form is $\text{1}\text{.2 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{10}}}$ years.
g. The distance of the Sun from the centre of the Milky Way galaxy is estimated to be $\text{300,000,000,000,000,000,000 m}$.
Ans: We have to write $\text{300,000,000,000,000,000,000}$ in standard form.
$\text{300,000,000,000,000,000,000 = 3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{20}}}$
Hence, the required standard form is $\text{3 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{20}}}\text{ m}$.
h. $\text{60,230,000,000,000,000,000,000}$ molecules are contained in a drop of water weighing $\text{1}\text{.8 gm}$.
Ans: We have to write $\text{60,230,000,000,000,000,000,000}$ in standard form.
$\text{60,230,000,000,000,000,000,000 = 6}\text{.023 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{22}}}$
Hence, the required standard form is $\text{6}\text{.023 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{22}}}$ molecules.
i. The Earth has $\text{1,353,000,000}$ cubic km of water.
Ans: We have to write $\text{1,353,000,000}$ in standard form.
$\text{1,353,000,000 = 1}\text{.353 }\!\!\times\!\!\text{ 1,000,000,000 = 1}\text{.353 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{9}}}$
Hence, the required standard form is $\text{1}\text{.353 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{9}}}$ cubic km.
j. The population of India was about $\text{1,027,000,000}$ in March, $\text{2001}$.
Ans: We have to write $\text{1,027,000,000}$ in standard form.
$\text{1,027,000,000 = 1}\text{.027 }\!\!\times\!\!\text{ 1,000,000,000 = 1}\text{.027 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{9}}}$
Hence, the required standard form is $\text{1}\text{.027 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{9}}}$.
Class 7 Maths Chapter 11: Exercises Breakdown
Exercise | Number of Questions |
Exercise 11.1 | 8 Questions & Solutions |
Exercise 11.2 | 5 Questions & Solutions |
Exercise 11.3 | 4 Questions & Solutions |
Conclusion
In conclusion, Exponents and Powers Class 7 equips you with a foundational understanding of expressing large numbers compactly and efficiently. Learn how to write repeated multiplication using exponents, explore properties of exponents for simplifying calculations, and gain an introduction to working with powers. With this knowledge, you can solve problems involving large numbers and lay the groundwork for more complex mathematical concepts in higher grades. In previous years exams around 1-2 questions appeared from Class 7 Maths Ch 11.
Other Study Material for CBSE Class 7 Maths Chapter 11
S.No. | Important Links for Chapter 11 Exponents and Powers |
1 | Class 7 Exponents and Powers Important Questions |
2 | |
3 | |
4 |
Chapter-Specific NCERT Solutions for Class 7 Maths
Given below are the chapter-wise NCERT Solutions for Class 7 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.
S.No. | NCERT Solutions Class 7 Chapter-wise Maths PDF |
1. | |
2. | |
3. | |
4. | |
5. | |
6. | |
7. | |
8. | |
9. | |
10. | |
11. | |
12. |
Important Related Links for NCERT Class 7 Maths
Access these essential links for NCERT Class 7 Maths, offering comprehensive solutions, study guides, and additional resources to help students master language concepts and excel in their exams.
S.No | Other CBSE Study Materials for Class 7 Maths |
1 | |
2 | |
3 | |
4 | |
5 | |
6. | |
7. | |
8. | |
9. |
FAQs on NCERT Solutions For Class 7 Maths Chapter 11 Exponents and Powers - 2025-26
1. What is the correct method, as per NCERT Solutions, for finding the value of an exponential expression like 3⁴?
The NCERT Solutions for Class 7 Maths Chapter 11 demonstrate that to find the value of an expression like 3⁴, you must multiply the base (3) by itself for the number of times indicated by the exponent (4). The step-by-step method involves writing out the expanded form, which is 3 × 3 × 3 × 3, and then calculating the final product, which is 81.
2. How do the NCERT Solutions for Class 7 Maths Chapter 11 explain the laws of exponents for solving problems?
The NCERT Solutions explain and apply the key laws of exponents to simplify complex problems. The solutions for the 2025-26 session show how to use these rules in a step-by-step manner:
- Multiplying Powers with the Same Base: Add the exponents (aᵐ × aⁿ = aᵐ⁺ⁿ).
- Dividing Powers with the Same Base: Subtract the exponents (aᵐ ÷ aⁿ = aᵐ⁻ⁿ).
- Taking a Power of a Power: Multiply the exponents ((aᵐ)ⁿ = aᵐⁿ).
- Multiplying Powers with the Same Exponents: Multiply the bases (aᵐ × bᵐ = (ab)ᵐ).
- Dividing Powers with the Same Exponents: Divide the bases (aᵐ ÷ bᵐ = (a/b)ᵐ).
3. How can I use the NCERT Solutions to solve problems on expressing large numbers in standard form?
The NCERT Solutions for Chapter 11 provide a clear, step-by-step method for converting large numbers into standard form (or scientific notation). The solutions guide you on how to express a number as a decimal between 1.0 and 10.0, multiplied by a power of 10. For example, to express 3,43,000, the solutions show how to move the decimal point 5 places to the left to get 3.43, resulting in the standard form 3.43 × 10⁵.
4. What is a common mistake when solving problems with different bases, and how do NCERT Solutions prevent it?
A common mistake is applying the laws of exponents to terms with different bases, such as adding exponents in 2³ × 3². The NCERT Solutions clarify that laws like aᵐ × aⁿ = aᵐ⁺ⁿ only work when the bases are identical. For expressions with different bases, the solutions demonstrate that you must first calculate the value of each term (2³ = 8 and 3² = 9) and then perform the operation (8 × 9 = 72).
5. Why is it important to show step-by-step working when simplifying exponential expressions, as shown in the solutions?
Showing step-by-step work is crucial as it helps you get full marks according to the CBSE evaluation pattern. The NCERT Solutions emphasise this by breaking down each problem. This method allows you to track which law of exponent you are applying at each stage, making it easier to identify and correct mistakes. It also builds a strong logical foundation for solving more complex problems later.
6. How do the NCERT Solutions handle problems where the base is a negative integer, like (-5)³?
The solutions provide a clear rule for this. When the base is a negative integer, the sign of the final answer depends on whether the exponent is odd or even.
- If the exponent is odd, like in (-5)³, the result will be negative: (-5) × (-5) × (-5) = -125.
- If the exponent is even, like in (-5)², the result will be positive: (-5) × (-5) = 25.
7. When solving a problem like (7²)³, why do the solutions instruct to multiply the exponents instead of adding them?
This is an application of the 'power of a power' rule. The expression (7²)³ means you are multiplying 7² by itself three times: 7² × 7² × 7². According to the product rule, you would add the exponents: 2 + 2 + 2 = 6. This is the same as multiplying 2 × 3. The NCERT Solutions show that using the 'power of a power' rule ((aᵐ)ⁿ = aᵐⁿ) is a more direct and efficient method to get the correct answer, 7⁶.

















